DOI QR코드

DOI QR Code

Influence of Phase Evolution and Texture on the Corrosion Resistance of Nitrogen Ion Implanted STS 316L Stainless Steel

질소 이온이 주입된 STS 316L 스테인리스 강에서의 상변화와 집합조직이 내식성에 미치는 영향

  • Jun, Shinhee (School of Materials Science and Engineering, University of Ulsan) ;
  • Kong, Young-Min (School of Materials Science and Engineering, University of Ulsan)
  • 전신희 (울산대학교 첨단소재공학부) ;
  • 공영민 (울산대학교 첨단소재공학부)
  • Received : 2015.05.04
  • Accepted : 2015.06.03
  • Published : 2015.06.27

Abstract

In this study, nitrogen ions were implanted into STS 316L austenitic stainless steel by plasma immersion ion implantation (PIII) to improve the corrosion resistance. The implantation of nitrogen ions was performed with bias voltages of -5, -10, -15, and -20 kV. The implantation time was 240 min and the implantation temperature was kept at room temperature. With nitrogen implantation, the corrosion resistance of 316 L improved in comparison with that of the bare steel. The effects of nitrogen ion implantation on the electrochemical corrosion behavior of the specimen were investigated by the potentiodynamic polarization test, which was conducted in a 0.5 M $H_2SO_4$ solution at $70^{\circ}C$. The phase evolution and texture caused by the nitrogen ion implantation were analyzed by an X-ray diffractometer. It was demonstrated that the samples implanted at lower bias voltages, i.e., 5 kV and 10 kV, showed an expanded austenite phase, ${\gamma}_N$, and strong (111) texture morphology. Those samples exhibited a better corrosion resistance.

Keywords

References

  1. Y. Li, L. Wang, J. Xu and D. Zhang, Surf. Coat. Technol., 206(8), 2430 (2012). https://doi.org/10.1016/j.surfcoat.2011.10.045
  2. J. F. Santos, C. M. Garzon and A. P. Tschiptschin, Mater. Sci. Eng. A 382(2), 378 (2004). https://doi.org/10.1016/j.msea.2004.05.003
  3. L. Yang, H. Yu, L. Jiang, L. Zhu, X. Jian and Z. Wang, J. Power Sourc., 195(9), 2810 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.018
  4. C. G. Dodd, G. P. Meeker, S. M. Baumann, J. C. Norberg and K. O. Legg, Nucl. Instrum. Methods Phys. Res., Sect. B, 7-8, 219 (1985). https://doi.org/10.1016/0168-583X(85)90558-0
  5. L. D. Yu, T. Vilaithong, D. Suwannakachorn, S. Intarasiri and S. Thongtem, Nucl. Instrum. Methods Phys. Res., Sect. B 127-128, 954 (1997). https://doi.org/10.1016/S0168-583X(97)00038-4
  6. Yong Luo and Shirong Ge, Tribol. Int., 42(9), 1373 (2009). https://doi.org/10.1016/j.triboint.2009.04.009
  7. J. Chen, J. R. Conrad and R. A. Dodd, J. Mater. Process. Tech., 49(1-2), 115 (1995). https://doi.org/10.1016/0924-0136(93)01285-U
  8. M. A. M. Ibrahim, S. F. Korablov and M. Yoshimura, Corrosion Sci., 44(4), 815 (2002). https://doi.org/10.1016/S0010-938X(01)00102-0
  9. D. A. Jones, Principles and prevention of corrosion, 2nd ed., Prentice Hall, Upper Saddle River, NJ (2011).
  10. R. G. Kelly, J. R. Scully, D. W. Shoesmith and R. G. Buchheit, Electrochemical techniques in corrosion science and engineering, Marcel Dekker, Inc., New York (2003).
  11. T. Christiansen and Marcel A. J. Somers, Scr. Mater., 50(1), 35 (2004). https://doi.org/10.1016/j.scriptamat.2003.09.042
  12. X. Li, M. Samandi, D. Dunne and R. Hutchings, Surf. Coat. Technol., 71(2), 175 (1995). https://doi.org/10.1016/0257-8972(94)01017-D
  13. S. Picard, J. B. Memet, R. Sabot, J. L. Grosseau- Poussard, J. P. Riviere and R. Meilland, Mater. Sci. Eng. A 303(1-2), 163 (2001). https://doi.org/10.1016/S0921-5093(00)01841-4
  14. C. Blawert, A. Weisheit, B. L. Mordike and R. M. Knoop, Surf. Coat. Technol., 85(1-2), 15 (1996). https://doi.org/10.1016/0257-8972(96)02880-0
  15. C. Blawert, B. L. Mordike, Y. Jiraskova and O. Schneeweiss, Surf. Coat. Technol., 116-119, 189 (1999). https://doi.org/10.1016/S0257-8972(99)00086-9
  16. A. Robin, G. A. S. Martinez and P. A. Suzuki, Mater. Des., 34, 319 (2012). https://doi.org/10.1016/j.matdes.2011.08.018
  17. S. Mandl, R. Gunzel, E. Richter and W. Moller, Surf. Coat. Technol., 100-101, 372 (1998). https://doi.org/10.1016/S0257-8972(97)00651-8
  18. X. B. Tian, Z. M. Zeng, T. Zhang, B. Y. Tang and P. K. Chu, Thin Solid Films, 366(1-2), 150 (2000). https://doi.org/10.1016/S0040-6090(00)00738-0
  19. C. Templier, J. C. Stinville, P. Villechaise, P. O. Renault, G. Abrasonis, J. P. Riviere, A. Martinavi ius and M. Drouet, Surf. Coat. Technol., 204(16-17), 2551 (2010). https://doi.org/10.1016/j.surfcoat.2010.01.041
  20. D. Manova, T. Hoche, S. Mandl and H. Neumann, Nucl. Instrum. Methods Phys. Res. Sect. B, 267(8-9), 1536 (2009). https://doi.org/10.1016/j.nimb.2009.01.075
  21. S. Mukherjee, J. Chakraborty, S. Gupta, P. M. Raole, P. I. John, K. R. M. Rao and I. Manna, Surf. Coat. Technol., 156(1), 103 (2002). https://doi.org/10.1016/S0257-8972(02)00072-5
  22. C. Blawert, H. Kalvelage, B. L. Mordike, G. A. Collins, K. T. Short, Y. Jiraskova and O. Schneeweiss, Surf. Coat. Technol., 136(1-3), 181 (2001). https://doi.org/10.1016/S0257-8972(00)01050-1
  23. E. Menthe, K. T. Rie, J. W. Schultze and S. Simson, Surf. Coat. Technol., 74(1), 412 (1995). https://doi.org/10.1016/0257-8972(95)08246-8
  24. S. Mukherjee, P. M. Raole and P. I. John, Surf. Coat. Technol., 157(2-3), 111 (2002). https://doi.org/10.1016/S0257-8972(02)00149-4
  25. X. Ma, S. Jiang, Y. Sun, G. Tang and M. Sun, Surf. Coat. Technol., 201(15), 6695 (2007). https://doi.org/10.1016/j.surfcoat.2006.09.030
  26. S. Mukherjee, P. M. Raole, A. Kumar, I. Chattoraj, K. R. M. Rao and I. Manna, Surf. Coat. Technol., 186(1-2), 282 (2004). https://doi.org/10.1016/j.surfcoat.2004.03.032
  27. D. S. Rickerby, A. M. Jones and B. A. Bellamy, Surf. Coat. Technol., 37(1), 111 (1989). https://doi.org/10.1016/0257-8972(89)90124-2
  28. S. Gangopadhyay, R. Acharya, A. K. Chattopadhyay and S. Paul, Vacuum, 84(6), 843 (2010). https://doi.org/10.1016/j.vacuum.2009.11.010
  29. M. Herranen, A. Delblanc Bauer, J. O. Carlsson and R. F. Bunshah, Surf. Coat. Technol., 96(2-3), 245 (1997). https://doi.org/10.1016/S0257-8972(97)00124-2
  30. C. T. Kuo, C. R. Lin and H. M. Lien, Thin Solid Films, 290-291, 254 (1996). https://doi.org/10.1016/S0040-6090(96)09016-5
  31. S. Khorsand, K. Raeissi and M. A. Golozar, Corrosion Sci., 53(8), 2676 (2011). https://doi.org/10.1016/j.corsci.2011.04.007
  32. H. Park and J. A. Szpunar, Corrosion Sci., 40(4-5), 525 (1998). https://doi.org/10.1016/S0010-938X(97)00148-0
  33. B. R. Kumar, R. Singh, B. Mahato, P. K. De, N. R. Bandyopadhyay and D. K. Bhattacharya, Mater. Charact., 54(2), 141 (2005). https://doi.org/10.1016/j.matchar.2004.11.004
  34. G. L. Song and Z. Xu, Corrosion Sci., 63, 100 (2012). https://doi.org/10.1016/j.corsci.2012.05.019