DOI QR코드

DOI QR Code

Dynamic Fracture Analysis with State-based Peridynamic Model: Crack Patterns on Stress Waves for Plane Stress Elastic Solid

상태 기반 페리다이나믹 모델에 의한 동적취성파괴 해석: 평면응력 탄성체의 응력 전파와 균열패턴 분석

  • Ha, Youn Doh (Department of Naval Architecture and Ocean Engineering, Kunsan National Univ.)
  • 하윤도 (군산대학교 조선해양공학과)
  • Received : 2015.04.07
  • Accepted : 2015.04.14
  • Published : 2015.06.30

Abstract

A state-based peridynamic model is able to describe a general constitutive model from the standard continuum theory. The response of a material at a point is dependent on the deformation of all bonds connected to the point within the nonlocal horizon region. Therefore, the state-based peridynamic model permits both the volume and shear changes of the material which is promising to reproduce the complicated dynamic brittle fracture phenomena, such as crack branching, secondary cracks, cascade cracks, crack coalescence, etc. In this paper, the two-dimensional state-based peridynamic model for a linear elastic plane stress solid is employed. The damage model incorporates the energy release rate and the peridynamic energy potential. For brittle glass materials, the impact of the crack-parallel compressive stress waves on the crack branching pattern is investigated. The peridynamic solution for this problem captures the main features, observed experimentally, of dynamic crack propagation and branching. Cascade cracks under strong tensile loading and secondary cracks are also well reproduced with the state-based peridynamic simulations.

상태 기반 페리다이나믹 모델은 일반적인 재료 구성 모델을 구현할 수 있고 비국부 영역 내에서 연결된 모든 결합의 변형을 통해 각 절점의 재료 응답이 결정되기 때문에 체적 및 전단 변형을 모두 표현할 수 있다. 따라서 상태 기반 모델은 복잡한 동적 취성 파괴 현상(분기균열, 2차 균열, 계단균열, 균열 유착 등)을 해석하는데 유용하다. 본 논문에서는 평면응력 탄성체에 대해 2차원 상태 기반 페리다이나믹 모델을 적용하고 에너지해방율과 페리다이나믹 에너지 포텐셜로부터 손상 모델을 구성하였다. 페리다이나믹 파괴 해석 모델을 통해 취성 유리 재료에 대해 균열 면에 평행한 압축 응력파가 균열 분기 패턴에 미치는 영향에 대해 조사하였다. 실험을 통해 관찰된 동적 균열 진전 및 분기 패턴에 대한 주요 특성들이 페리다이나믹 해석을 통해 확인되었다. 또한 강한 인장 하중 하의 계단균열과 이차균열 등이 상태 기반 페리다이나믹 시뮬레이션을 통해 잘 모사가 되는 것을 확인할 수 있었다.

Keywords

References

  1. Bobaru, F., Ha, Y.D., Hu, W. (2012) Damage Progression from Impact in Multilayered Glass Modeled with Peridynamics, Central European J. Eng., 2(4), pp.551-561.
  2. Bowden, F.P., Brunton, J.H., Field, J.E., Heyes, A.D. (1967) Controlled Fracture of Brittle Solids and Interruption of Electrical Current, Nature, 216, pp.38-42. https://doi.org/10.1038/216038a0
  3. Doll, W. (1975) Investigations of the Crack Branching Energy, Int. J. Fract., 11, pp.184-186. https://doi.org/10.1007/BF00034729
  4. Ha, Y.D., Bobaru, F. (2010) Studies of Dynamic Crack Propagation and Crack Branching with Peridynamics, Int. J. Fract., 162(1-2), pp.229-244. https://doi.org/10.1007/s10704-010-9442-4
  5. Ha, Y.D., Bobaru, F. (2011) Characteristics of Dynamic Brittle Fracture Captured with Peridynamics, Eng. Fract. Mech., 78(6), pp.1156-1168. https://doi.org/10.1016/j.engfracmech.2010.11.020
  6. Ha, Y.D., Cho, S. (2011) Dynamic Brittle Fracture Captured with Peridynamics: Crack Branching Angle & Crack Propagation Speed, J. Comput. Struct. Eng. Inst. Korea, 24(6), pp.637-643.
  7. Ha, Y.D., Cho, S. (2012) Nonlocal Peridynamic Models for Dynamic Brittle Fracture in Fiber- Reinforced Composites: Study on Asymmetrically Loading State, J. Comput. Struct. Eng. Inst. Korea, 25(4), pp. 279-292. https://doi.org/10.7734/COSEIK.2012.25.4.279
  8. Ha, Y.D., Lee, J., Hong, J-W. (2014) Fracturing Patterns of Rock-like Materials in Compression Captured with Peridynamics, Eng. Fract. Mech., Submitted.
  9. Ha, Y.D. (2015) State-based Peridynamic Modeling for Dynamic Fracture of Plane Stress, J. Comput. Struct. Eng. Inst.Korea, accepted.
  10. Hu, W., Ha, Y.D., Bobaru, F. (2011) Modeling Dynamic Fracture and Damage in Fiber-Reinforced Composites with Peridynamics, Int. J. Multiscale Comput. Eng., 9(6), pp.707-726. https://doi.org/10.1615/IntJMultCompEng.2011002651
  11. Hu, W., Ha, Y.D., Bobaru, F. (2012) Peridynamic Model for Dynamic Fracture in Unidirectional Fiber-Reinforced Composites, Comput. Methods Appl. Mech.& Eng., 217, pp.247-261.
  12. Le, Q.V., Chan, W.K., Schwartz, J. (2014) A Two-Dimensional Ordinary, State-based Peridynamic Model for Linarly Elastic Solids, Int. J. Numer. Methods Eng., 98, pp.547-561. https://doi.org/10.1002/nme.4642
  13. Ravi-Chandar, K., Knauss, W.G. (1944) An Experimental Investigation into Dynamic Fracture: IV. On the Interaction of Stress Waves with Propagating Cracks, Int. J. Fract., 26, pp.189-200.
  14. Silling, S.A. (2000) Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces, J. Mech.& Phys. Solids, 48, pp.175-209. https://doi.org/10.1016/S0022-5096(99)00029-0

Cited by

  1. Peridynamic Modeling for Crack Propagation Analysis of Materials vol.31, pp.2, 2018, https://doi.org/10.7734/COSEIK.2018.31.2.105