DOI QR코드

DOI QR Code

Evaluation of Shear Strength for Wide Beam using GFRP Plate Shear Reinforcement

GFRP 판을 전단보강재로 사용한 넓은 보의 전단성능 평가

  • Jo, Eunsun (Department of Architectural Engineering, Kyung Hee University) ;
  • Choi, Jin Woong (Department of Architectural Engineering, Kyung Hee University) ;
  • Kim, Min Sook (Department of Architectural Engineering, Kyung Hee University) ;
  • Kim, Heecheul (Department of Architectural Engineering, Kyung Hee University) ;
  • Lee, Young Hak (Department of Architectural Engineering, Kyung Hee University)
  • Received : 2015.02.11
  • Accepted : 2015.05.03
  • Published : 2015.06.30

Abstract

In this paper, an experimental evaluation of shear strength of wide beam is presented. By the experiment in paper, shear strength depending on parameter of shear reinforcement by GFRP plate on wide beam is investigated. Specimens are 7 of reinforced by GFRP plate with openings. The shear reinforcement is manufactured into plate shape with openings to ensure perfect integration with concrete. The test was performed on 7 specimens. The parameters are including number of shear reinforcement by GFRP plates and center-to-center spacing between vertical strip. We analysed the crack, failure mode, strain, shear strength of specimens. A calculation of the shear strength of reinforced wide beam with GFRP plate based on ACI 318-11. The result of the experiment shows that the GFRP plate is works successfully as shear reinforcement in the wide beam.

본 논문은 넓은 보의 전단강도를 대상으로 한 실험적 평가에 대해 기술하였다. 본 논문의 실험을 통해 넓은 보에 횡방향 단면에서 GFRP 판의 보강개수와 종방향 전단보강 간격, 그리고 유효깊이가 전단강도에 끼치는 영향에 관하여 연구하였다. 총 7개의 시험체에 유공형 GFRP 판 형태로 전단보강재를 보강하여 전단성능 실험을 실시하였다. 본 논문에 기재된 전단보강재는 유공형 판 형태로 제작되어 타설 시 콘크리트의 유동성을 증가시켜 보강재와 콘크리트의 부착력을 향상시켰다. 7개 시험체의 주 변수로는 전단보강재의 횡방향 단면에 대한 판의 보강개수와 종방향 전단보강 간격, 그리고 유효깊이로 정하였다. 시험체의 균열 및 파괴 양상, 변형률과 전단강도비를 분석하였다. GFRP판으로 전단보강된 넓은 보의 전단강도는 ACI 318-11 기준으로 산정되었다. 실험의 결과를 통해 유공형 GFRP 판이 전단보강재로서 넓은 보에 효과적으로 적용됨을 확인하였다.

Keywords

References

  1. ACI Committee 318-11 (2011) Building Code Requirements for Reinforced Concrete and Commentary (ACI 318-11), American Concrete Institute, Farmington Hills.
  2. Adam, S.L., Evan, C.B., Michael, P.C. (2009) Shear Reinforcement Spacing in Wide Members, ACI Struct. J., 106(2), pp.205-214.
  3. Ahmed, E.A., Ahmed, K., El-Sayed, El-Salakawy, E., Benmokrane, B. (2010) Bend Strength of FRP Stirrups: Comparison and Evaluation of Testing Methods, J. Compos. Constr,. 14(1), pp.3-10. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000050
  4. Ahmed, B. Shuraim, A.M. (2012) Transverse Stirrup Configurations in RC Wide Shallow Beams Supported on Narrow Columns, J. Struct. Eng., 138, pp.416-424. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000408
  5. Anderson, N.S., Ramirez, J.A. (1989) Detailing of Stirrup Reinforcement, ACI Struct. J., 86(5), pp.507-515.
  6. Choi, J.H., Kim, M.S., Kim, H.C., Lee, Y.H. (2012) Experimental Study on Shear Behaviors for Reinforced Concrete Beams Embededded with GFRP Plate with Openings, J. Korea Concr. Inst., 24(4), pp.407-414. https://doi.org/10.4334/JKCI.2012.24.4.407
  7. Grace, N. F., Soliman, A. K., Abdel-Sayed. G., Sale. K. R. (1998) Behavior and Ductility of Simple and Continuos FRP, J. Compos. Constr., 2(3), pp.186-194. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(186)