DOI QR코드

DOI QR Code

Collapse Modes of Steel Ordinary Concentrically Braced Frames According to Unbalanced Forces

불균형력에 따른 철골보통중심가새골조의 붕괴모드

  • Park, Jin-Young (Division of Architectural Engineering, University of Seoul) ;
  • Kim, Seo-Yeon (Division of Architectural Engineering, University of Seoul) ;
  • Hong, Suk-Jae (Division of Architectural Engineering, University of Seoul) ;
  • Kim, Hyung-Joon (Division of Architectural Engineering, University of Seoul)
  • 박진영 (서울시립대학교 건축공학과) ;
  • 김서연 (서울시립대학교 건축공학과) ;
  • 홍석재 (서울시립대학교 건축공학과) ;
  • 김형준 (서울시립대학교 건축공학과)
  • Received : 2015.01.23
  • Accepted : 2015.04.17
  • Published : 2015.06.30

Abstract

The KBC2009 first introduces the requirements about vertical unbalanced forces into the design for steel ordinary concentrically braced frames(steel OCBFs), which forces them to easily meet the target seismic performance, called as the life safety performance objective under design based earthquakes(DBEs) pursuing in the KBC2009. However, there is little information on the effects of vertical unbalanced forces to the collapse prevention performance objective under maximum considered earthquakes(MCEs) which is another target seismic performance level implicitly prescribed in ASCE 7-10. It is valuable that the collapse capacities of steel OCBFs designed according to the KBC2009 are investigated. In this paper, the collapse modes of inverted V shaped steel OCBFs excited by MCEs are investigated. The prototype buildings of 5 story steel OCBFs are designed with different site conditions and three types of unbalanced forces are considered in the design stages. The prototype buildings are evaluated their seismic performances and collapse modes by nonlinear static analyses and nonlinear dynamic analyses. Analysis results show that the unbalanced forces significantly affect the seismic performance of the prototype buildings and proper considerations of unbalanced forces are required to achieve the desirable collapse mode and the collapse prevention performance objective.

철골보통중심가새골조의 수직불균형력에 대한 설계 요구사항이 KBC2009에서 처음으로 도입하였고, 이를 통하여 설계지진에서의 인명안전성능이라는 목표내진성능을 만족하도록 유도하고 있다. 그러나 수직 불균형력의 영향이 ASCE7-10에서 암시적으로 제시하는 최대고려지진에서의 구조물 붕괴방지성능에 미치는 영향에 대한 연구는 매우 제한적으로 이루어지고 있어 KBC2009를 따라 설계된 철골보통중심가새골조의 붕괴성능을 조사할 필요가 있다. 이를 위하여 본 논문에서는 역V형 철골보통중심가새골조의 최대고려지진에서의 붕괴양상을 조사하였다. 두 가지 지반조건과 세 가지 다른 수직불균형력 조건을 해석변수로 하여 총 6개의 5층 규모의 철골보통중심가새골조 표본건물을 설계하였다. 비선형 정적해석과 비선형 동적해석을 통하여 표본건물들의 내진성능과 붕괴양상을 조사하였다. 해석결과를 통해 수직 불균형력은 철골보통중심가새골조의 내진성능에 지대한 영향을 미쳤고, 바람직한 붕괴양상과 붕괴방지성능을 달성하기 위하여 불균형력에 대한 적절한 고려가 필요한 것으로 나타났다.

Keywords

References

  1. AIK (2005) Korean Building Code, Architectural Institute of Korea, Seoul.
  2. AIK (2009) Korean Building Code, Architectural Institute of Korea, Seoul.
  3. AISC 341-02 (2002) Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Inc, Chicago, Illinois, U.S.A.
  4. AISC 341-05 (2005) Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Inc, Chicago, Illinois, U.S.A.
  5. AISC 341-09 (2009) Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Inc, Chicago, Illinois, U.S.A.
  6. ASCE/SEI 7-05 (2005) Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, Virginia, U.S.A.
  7. ASCE/SEI 7-10 (2010) Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, Virginia, U.S.A.
  8. Carr, A.J. (2009) RUAUMOKO2D, Computer Program Library, Department of Civil Engineering, University of Canterbury, New Zealand.
  9. Cho, C.H., Lee, C.H., Kim, J.J. (2011) Prediction of Column Axial Forces in Inverted V-braced Seismic Steel Frames Considering Brace Buckling, J. Struct. Eng., 137(12), pp.1440-1450. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000377
  10. Khatib, I.F., Mahin, S.A., Pister, K.S. (1988) Seismic Behabior and Design of Concentrically Braced Steel Frames, Report UCB/EERC-88/01, Earthquake Engineering Research Center, Univ. of California, Berkeley, California, U.S.A.
  11. Vamvatsikos, D., Cornell, C.A. (2001) Incremental Dynamic Analysis, Earthq. Eng. & Struct. Dyn., 31, pp.491-514.
  12. FEMA 350 (2000) Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, Federal Emergency Management Agency, Washington, D.C, U.S.A.
  13. FEMA 356 (2000) Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, D.C, U.S.A.
  14. Remennikov, A.M., Walpole, W.R. (1997) Modeling the Inelastic Cyclic Behaviour of A Bracing Member for Work Hardening Material, Int. J. Solids Struct., 34(27), pp.3491-3515. https://doi.org/10.1016/S0020-7683(96)00212-0