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ABSTRACT. In this paper, the efficient column-wise/row-wise lattice reduction (LR) updating

and downdating methods are developed and their complexities are analyzed. The well-known

LLL algorithm, developed by Lenstra, Lenstra, and Lovász, is considered as a LR method.

When the column or the row is appended/deleted in the given lattice basis matrix H, the pro-

posed updating and downdating methods modify the preconditioning matrix that is primarily

computed for the LR with H and provide the initial parameters to reduce the updated lattice

basis matrix efficiently. Since the modified preconditioning matrix keeps the information of

the original reduced lattice bases, the redundant computational complexities can be eliminated

when reducing the lattice by using the proposed methods. In addition, the rounding error anal-

ysis of the proposed methods is studied. The numerical results demonstrate that the proposed

methods drastically reduce the computational load without any performance loss in terms of the

condition number of the reduced lattice basis matrix.

1. INTRODUCTION

Lattice reduction (LR) is a method to find the bases of the given lattice space close to the

shortest vector, which has been successfully applied to cryptography, factoring the polynomials

( [1–3] and references therein), and multiple-input multiple output (MIMO) communication

system [4–9].

A well-known LR method due to its simplicity and efficiency is the LLL algorithm devel-

oped by Lenstra, Lenstra, and Lovász [1] which has the complexity of O(N4 logB) multipli-

cations (or equivalently, O(N5(logB)2) bit operations) for a lattice basis matrix H(∈ RM×N )
where B is the maximum in the squared norm of columns of H.
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During recent decades, several efficient algorithms have been developed which has less com-

putational complexities than the LLL algorithm. For example, the LLL using the fraction-

free Gaussian elimination and modular operation was proposed by Storjohann [10], which

costs O
(
N4 (logB)2

)
bit operations. Koy and Schnorr proposed the segment LLL-reduction

method, whose complexity is O
(
N4 logB +N3 (logB)2

)
bit operations [11, 12]. However,

to the best of the authors’ knowledge, the LLL updating and downdating methods when a col-

umn or a row is updated/downdated in a given lattice basis matrix have not been addressed so

far. This LLL updating/downdating could be important in many applications; For example, in

multi-user (MU) MIMO precoding system when new users enter the current system or existing

users leave the system, the LLL algorithm should be newly run to find the preconditioning ma-

trix for the updated channel matrix (lattice basis matrix) which could be a major bottleneck in

LR aided MU MIMO precoding [9].

In this paper, we propose efficient LLL updating and downdating methods when the column-

wise or row-wise modification occurs in the given lattice basis matrix. In the proposed methods,

the preconditioning matrix for the original basis matrix is modified to provide the suitable initial

parameters to reduce the newly updated lattice basis matrix efficiently. Because the modified

preconditioning matrix keeps the information of the original reduced lattice bases, the proposed

methods require less computational complexities than the conventional LLL. Moreover, the

rounding error analysis for the proposed methods is studied, based on the previously developed

results [13–17], showing that the proposed algorithms are numerically stable. In the numerical

results, the condition numbers of the reduced lattice basis matrices are evaluated when the

proposed methods are applied and their computational complexities are also compared with

those without updating/downdating methods.

The rest of this paper is organized as follows. In Section 2 the LLL algorithm is briefly

reviewed. In Section 3 the column-wise LLL updating and downdating methods are proposed

and their complexities are analyzed. In Section 4 the row-wise LLL updating and downdating

methods are developed. In Section 5 the rounding error analysis of the proposed methods is

provided. Several simulation results for various conditions are presented in Section 6. Con-

cluding remarks are made in Section 7.

2. LATTICE REDUCTION: LLL ALGORITHM

Lattice L(H) is defined as
∑N

n=1 hnsn, where hn, the nth column vector of H ∈ RM×N

where M ≥ N , is a basis of the lattice and sn ∈ Z [1]. A lattice basis matrix H is LLL reduced

if

|μij | ≤ 1/2 for 1 ≤ i < j ≤ N (2.1)

and

3/4‖ho
i−1‖22 ≤ ‖ho

i + μi−1ih
o
i−1‖22 for 1 < i ≤ N, (2.2)
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TABLE 1. LLL algorithm

1 T = IN , H = QR
2 i = 2
3 while i ≤ N
4 for l = i− 1, ..., 1
5 [R, T] = Size-reduction(R, T, i, l)
6 end

7 if 3/4r2i−1i−1 > r2ii + r2i−1i
8 [R, T] = two-reduction(R, T, i )

9 i = max{i− 1, 2}
10 else

11 i = i+ 1
12 end

13 end

where ho
j = hj −

∑j−1
i=1 μijh

o
i with μij =

hT
i ho

j

hoT
i ho

i
and (·)T represents the matrix transposition.

Equivalently, a lattice basis matrix H with QR decomposition H = QR, where QTQ = IN ,

Q ∈ RM×N , and R ∈ RN×N is upper triangular, is LLL reduced if

|rij | ≤ 1/2|rii| for 1 ≤ i < j ≤ N (2.3)

and

3/4r2i−1i−1 ≤ r2ii + r2i−1i for 1 < i ≤ N, (2.4)

where rij is the (i, j)th element of R. Here, IN denotes an N ×N identity matrix. Note that

μij =
rij
rii

. If Eqn. (2.1) (equivalently, Eqn. (2.3)) is satisfied, H is said to be size-reduced and

if Eqn. (2.2) (equivalently, Eqn. (2.4)) is satisfied, H is said to be two-reduced. The constant
3
4 in Eqn. (2.2) and Eqn. (2.4) could be arbitrarily replaced by any fixed real number within

(1/4, 1) [1].

The LLL algorithm finds a unimodular matrix T such that HT is LLL reduced, i.e.,

G = HT, (2.5)

where T is a unimodular matrix, a square matrix with integer entries such that | det(T)| = 1,

and G is lattice reduced. The LLL algorithm along with two functions, size-reduction and

two-reduction [1, 7], is rephrased in Table 1 and 2. In size-reduction step, by a modular op-

eration, Eqn. (2.3) can be satisfied. In two-reduction step, if Eqn. (2.4) is not satisfied, the

corresponding adjacent columns are swapped and the triangular form of matrix R is recovered

by the Givens rotation. Since the Givens rotation preserves the norm of each column, Eqn.

(2.4) can be satisfied by simply swapping the columns.

To evaluate the computational complexity of LLL algorithm, the following lemma [18] will

be useful.
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TABLE 2. Functions of LLL algorithm

[R, T]= Size-reduction(R, T, i, l)
1 μ = 	rl,i/rl,l

2 if μ �= 0
3 R1:l,i = R1:l,i − μR1:l,l

4 T1:end,i = T1:end,i − μT1:end,l

5 end

[R, T]= two-reduction(R, T, i)
1 Swap columns i− 1 and i in R and T
2 Triangularize R using Givens rotation matrix Θ
3 Ri−1:i,i−1:end = ΘRi−1:i,i−1:end

Lemma 1. If we define D = r2N11 · r2(N−1)
22 · ... · r2NN , the size-reduction step does not affect

D, while the two-reduction step decreases D by a factor of at least 3/4.

Therefore, the number of while loop iterations in the algorithm is at most O(logD0) where

D0 = ‖h1‖2N · ‖h2‖2(N−1) · ... · ‖hN‖2. If we set B = max{‖h1‖2, ..., ‖hN‖2}, then

O(logD0) � O(N2 logB). Since the size-reduction step in lines 4 − 6 of Table 1 requires

only O(N2) multiplications, total O(N4 logB) multiplications are required. Each real num-

ber used during the process of the algorithm is bounded by O(N logB) bits [1]. Hence, total

O(N5(logB)2) bit operations are required in the LLL algorithm. Note that because the com-

plexity of LLL algorithm depends directly on the number of while loop iterations, we would

focus only on the number of the two-reduction steps as a measure of the computational com-

plexity.

Remark 1. The LLL algorithm depends only on the upper triangular matrix R in Table 1.
That is, the output of LLL algorithm is invariant on the pre-multiplication of the orthogonal
matrix. Therefore, the updating and downdating algorithms are developed by modifying R in
the following sections.

3. LLL COLUMN-WISE UPDATING AND DOWNDATING

3.1. Column-wise Updating. Let H ∈ RM×N ,M ≥ N have a QR decomposition as

H = QR, (3.1)

where QTQ = IN and R ∈ RN×N is upper triangular and assume that, given H, we have

the preconditioning matrix T ∈ ZN×N which is a unimodular matrix computed by the LLL

algorithm. Here, the QR decomposition of HT ∈ RM×N is also given after completing the

LLL algorithm as:

G = HT = Q̃R̃, R̃ ∈ RN×N (3.2)
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where R̃ satisfies Eqns. (2.3) and (2.4). We then want to find the new preconditioning matrix

Tu after a new column hc is added:

Gu = HuTu = [H hc]Tu, (3.3)

where Gu is lattice reduced.

First, we define the upper triangular matrix R̃in
u ∈ R(N+1)×(N+1) which is updated from Q̃

and R̃ in Eqn. (3.2) as

R̃in
u =

[
R̃ w

01×N ‖q‖2

]
, (3.4)

where 0M×N denotes a zero M ×N matrix and

w = Q̃Thc, q = hc − Q̃w, (3.5)

so that R̃in
u holds the information about the reduced lattice basis structure for H and [G hc] =

Q̃in
u R̃in

u with (Q̃in
u )T Q̃in

u = IN+1. The corresponding Tin
u is then given as

Tin
u =

[
T 0N×1

01×N 1

]
, (3.6)

such that [G hc] = [H hc]T
in
u . Therefore, the preconditioning matrix Tu can be efficiently

obtained from R̃in
u and Tin

u , rather than by applying the LLL algorithm to [Hhc] from scratch.

To complete the updating algorithm, we only need to replace the line 1 of Table 1 with

T = Tin
u , R = R̃in

u . (3.7)

To see the computational complexity, the value D in Lemma 1 indicating the number of the

required two-reduction steps is evaluated for the updating algorithm. Let DN = r2N11 r
2(N−1)
22 · · · r2NN

from R in Eqn. (3.1). If a new column hu is updated from Q and R, DN+1 for [Hhc] is given

as

DN+1 = r
2(N+1)
11 r2N22 · · · r2N+1N+1

= DN · r211r222 · · · r2N+1N+1

= DN · det([H hc]
T [H hc]). (3.8)

According to Lemma 1, the numbers of two-reduction steps carried out when applying the

conventional LLL to [H hc] and H are, respectively, O(log(DN+1)) and O(log(DN )). There-

fore, because the first N columns of R̃in
u represents the already reduced bases for H, the

number of the required two-reduction steps when adopting the updating method becomes

O(log(det([H hc]
T [H hc]))).

3.2. Column-wise Downdating. In this section, given H in Eqn. (3.1) with preconditioning

matrix T, we find the new preconditioning matrix Td for a submatrix Hd where H = [Hd hN ]
and hN ∈ RM×1. Note that the QR decomposition of HT is also given as in Eqn. (3.2).

Downdating hN from H can be represented as:

H− hNeTN = Q′R′ =
[
Hd 0M×1

]
, (3.9)
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where Q′ = Q and R′ =
[
R(1 : N, 1 : N − 1) 0N×1

]
. Here, A(i : j, k : l) denotes the

submatrix of A with elements from the ith row to the jth row and from the kth column to the

lth column. Similarly, to downdate hN from G, the influence of hN on G should be removed,

which induces

G− hNt(N)T = Q̃R̃− hNt(N)T

= Q̃′R̃′, (3.10)

where t(N)T is the N th row of T, Q̃′T Q̃′ = IN , and R̃′ is upper triangular. Here, R̃′ can be

computed by utilizing the QR rank-one changing method [19], which leads

R̃′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r′11 . . . r′1i′−1

0
. . .

...

r′i′−1i′−1
0

...
. . .

...

0
0 . . . 0︸ ︷︷ ︸
R̃′

a∈RN×(i′−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r′1i′
...

r′i′−1i′
0
0
...

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r′1i′+1 . . . r′1N
...

...

r′i′i′+1

r′i′+1i′+1

. . .
...

0
. . . r′NN−1

r′NN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

R̃′
b∈RN×(N−i′)

, rank(R̃′) = N − 1,(3.11)

for some i′, 1 ≤ i′ ≤ N . Since det(T) = ±1 and the rank-one deficiency in both R′ and

R̃′ arises from downdating hN , by deleting the corresponding columns causing the rank-one

deficiency in both of R′ and R̃′ (that is, the N th column of R′ and the i′th column of R̃′), it

can be found that

det
(
R̃′′T R̃′′

)
= det

(
R′(1 : N, 1 : N − 1)TR′(1 : N, 1 : N − 1)

)
(3.12)

where R̃′′ =
[
R̃′

a R̃′
b

]
. Now let us define the correspondingly partitioned matrices:

T =
[
Ta t

′
i Tb

]
, Ta ∈ ZN×(i′−1), Tb ∈ ZN×(N−i′). (3.13)

Because

Q̃′R̃′ = Q̃R̃− hNt(N)T

= Q̃R̃T−1T− hNt(N)TT−1T

= (H− hNeTN )T

= Q′R′T, (3.14)

the following equation can then be derived:

Q̃′R̃′′ = Q′R′T′, (3.15)

where T′ =
[
Ta Tb

]
. Since the last column of R′ is 0N×1,

Q̃′R̃′′ = HdT
′′, (3.16)



EFFICIENT LATTICE REDUCTION UPDATING AND DOWNDATING METHODS AND ANALYSIS 177

where T′′ = T′(1 : N − 1, 1 : N − 1). Since T′′ ∈ ZN−1×N−1 and det(T′′) = ±1 from

Eqn.(3.12), T′′ is also unimodular. Here, to recover QR formula in the left side hand of Eqn.

(3.16), a total of N − i′ − 1 Givens rotations are required as:

(Q̃′JT
i′ · · ·JT

N−2) (JN−2 · · ·Ji′R̃
′′) = HdT

′′, (3.17)

where Ji is the Givens rotation matrix forcing zero on the (i + 1, i)th entry of R̃′′ which has

Hessenberg form. Therefore, let R̃in
d = JN−2 · · ·Ji′R̃

′′ and Tin
d = T′′ then the precondition-

ing matrix Td can be computed by using R̃in
d and Tin

d as initial parameters, similarly to Eqn.

(3.7).

To see the complexity for the downdating method, the value D, defined in Lemma 1, is

evaluated. From Eqn. (3.10),

(r̃in11)
2 ≤ (|r̃11|+ ‖hN‖‖t(N)‖)2, (3.18)

where r̃inii is the ith diagonal element of R̃in
d . Let

Dn =

N−1∏
k=1

(r̃inkk)
2(N−k),

then, to get the upper bound of Dn, we set (r̃in11)
2 = (|r̃11|+ ‖hN‖‖t(N)‖)2 from Eqn. (3.18)

which implies that hN and t(N)T in Eqn. (3.10) should have the following form:

hN = ±‖hN‖q̃1, t(N)T = ±‖t(N)‖eT1 , (3.19)

where their signs depends on the sign of r̃11. Then, Dn has the following inequality:

Dn ≤
(
1 +

‖hN‖‖t(N)‖
|r̃11|

)2(N−1) N−1∏
k=1

r̃
2(N−k)
kk . (3.20)

Since r̃kk is from the reduced basis matrix, Dn is lower bounded by
∏N−1

k=1 r̃
2(N−k)
kk . Therefore,

the number of two-reduction steps required in the downdating method is at most O(logDd),
where

Dd =

(
1 +

‖hN‖‖t(N)‖
|r̃11|

)2(N−1)

, (3.21)

indicating that the complexity depends mainly on the contribution of downdated column hN on

the reduced lattice basis (represented by the norm of t(N)), that is, if ‖hN‖‖t(N)‖ is relatively

small to the norm of the shortest lattice basis (|r̃11|), then the required computation overhead

also becomes small.



178 JAEHYUN PARK AND YUNJU PARK

4. LLL ROW-WISE UPDATING AND DOWNDATING

4.1. Row-wise Updating. In this section, given H in Eqn. (3.1) with the preconditioning

matrix T, we find the new preconditioning matrix Tu after a new row hT
r is added:

Gu = HuTu =

[
hT
r

H

]
Tu, hT

r ∈ R1×N (4.1)

where Gu is lattice reduced. Since the QR decomposition of HT is known as Eqn. (3.2), the

new row hT
r can be updated based on Q̃ and R̃ rather than using Q and R as follows:

G′ =
[
hT
r T
HT

]
=

[
hT
r T

Q̃R̃

]
=

[
1 01×N

0N×1 Q̃

] [
hT
r T

R̃

]
, (4.2)

where

[
hT
r T

R̃

]
has a Hessenberg form, which can be recovered into the triangular form by

using N − 1 Givens rotations as:

JN−1 · · ·J1

[
hT
r T

R̃

]
= R̃in

u . (4.3)

The preconditioning matrix Tu can then be computed by using R̃in
u and T as initial parameters.

Here, to analyze the upper bound of the computational complexity, the process of applying

the Givens rotation to the Hessenberg matrix of Eqn. (4.3) is investigated in more detail.

Let

[
hT
r T

R̃

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

h′1 h′2 h′3 · · · h′N
r̃11 r̃12 r̃13 · · · r̃1N

r̃22 r̃23 · · · r̃2N
r̃33 · · · r̃3N

. . .
...

r̃NN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (4.4)

J1

[
hT
r T

R̃

]
can then be represented as:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

k
(1)
1 k

(1)
2 cos θ

(1)
2 k

(1)
3 cos θ

(1)
3 · · · k

(1)
N cos θ

(1)
N

k
(1)
2 sin θ

(1)
2 k

(1)
3 sin θ

(1)
3 · · · k

(1)
N sin θ

(1)
N

r̃22 r̃23 · · · r̃2N
r̃33 · · · r̃3N

. . .
...

r̃NN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (4.5)
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where k
(1)
i =

√
h′2i + r̃21i for i ≥ 1 and θ

(1)
1 = 0, θ

(1)
i = cos−1 r̃11h′

i+r̃1ih
′
1

k
(1)
1 k

(1)
i

for i ≥ 2. Similarly,

after J2 is multiplied to Eqn. (4.5), the following equation can be obtained:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

k
(1)
1 k

(1)
2 cos θ

(1)
2 k

(1)
3 cos θ

(1)
3 · · · k

(1)
N cos θ

(1)
N

k
(2)
2 k

(2)
3 cos θ

(2)
3 · · · k

(2)
N cos θ

(2)
N

k
(2)
3 sin θ

(2)
3 · · · k

(2)
N sin θ

(2)
N

r̃33 · · · r̃3N
. . .

...

r̃NN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.6)

where k
(2)
i =

√
(k

(1)
i sin θ

(1)
i )2 + r̃22i for i ≥ 2 and θ

(2)
2 = 0, θ

(2)
i = cos−1 r̃22k

(1)
i sin θ

(1)
i +r̃2ik

(1)
2 sin θ

(1)
2

k
(2)
2 k

(2)
i

for i ≥ 3. Continuing the process, the parameters for the entries of R̃in
u can be generalized as:

k
(j)
i =

√
(k

(j−1)
i sin θ

(j−1)
i )2 + r̃2ji for 1 ≤ j ≤ i ≤ N,

θ
(j)
i = cos−1

r̃jjk
(j−1)
i sin θ

(j−1)
i + r̃jik

(j−1)
j sin θ

(j−1)
j

k
(j)
j k

(j)
i

for 1 ≤ j < i ≤ N, (4.7)

θ
(i)
i = 0 for 1 ≤ i ≤ N,

with (k
(0)
i )2 = h′2i and θ

(0)
i = 90◦. Therefore, the squares of the diagonals of R̃in

u are repre-

sented as:

(r̃inii )
2 = (k

(i)
i )2 = (k

(i−1)
i )2 sin2 θ

(i−1)
i + r̃2ii,

= (k
(i−2)
i )2 sin2 θ

(i−2)
i sin2 θ

(i−1)
i + r̃2i−1i sin

2 θ
(i−1)
i + r̃2ii,

...

= r̃2ii +
i−1∑
j=1

r̃2ji

i−j∏
k=1

sin2 θ
(k)
i + h′2i

i∏
j=1

sin2 θ
(i−j)
i (4.8)
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To get the upper bound of the number of required two-reduction steps, the value D defined

in Lemma 1 is computed for R̃in
u as:

Dn = (k
(1)
1 )2N (k

(2)
2 )2(N−2) · · · (k(N)

N )2

= (r̃211 + h′21 )
N (r̃222 + r̃212 sin

2 θ
(1)
2 + h′22 sin2 θ

(1)
2 sin2 θ

(0)
2 )N−2 · · ·

(r̃2NN +
N−1∑
j=1

r̃2jN

N−j∏
k=1

sin2 θ
(k)
N + h′2N

N∏
j=1

sin2 θ
(N−j)
N )

= Dp

N∏
i=1

⎛⎝1 +

i−1∑
j=1

r̃2ji
r̃2ii

i−j∏
k=1

sin2 θ
(k)
i +

h′2i
r̃2ii

i∏
j=1

sin2 θ
(i−j)
i

⎞⎠N−i+1

, (4.9)

where Dp = r̃2N11 r̃
2(N−1)
22 · · · r̃2NN is the value for HT, the reduced lattice bases before adding

a new row. Therefore, the number of two-reduction steps required in the updating method is at

most O(logDu), where

Du =

N∏
i=1

⎛⎝1 +

i−1∑
j=1

r̃2ji
r̃2ii

i−j∏
k=1

sin2 θ
(k)
i +

h′2i
r̃2ii

i∏
j=1

sin2 θ
(i−j)
i

⎞⎠N−i+1

. (4.10)

Here, since r̃ij is from the QR decomposition of the reduced lattice basis matrix in Eqn. (3.2),

satisfying two LR conditions of Eqns. (2.3) and (2.4), it can be easily induced that r̃2ji ≤ r̃2ii
for j < i, which leads to the following equation:

Du ≤
N∏
i=1

⎛⎝i+
h′2i
r̃2ii

i∏
j=1

sin2 θ
(i−j)
i

⎞⎠N−i+1

. (4.11)

Therefore, the complexity of the updating method depends on the matrix size (the first term, i,

in Eqn. (4.11)) and the newly updated column (the second term,
h′2
i

r̃2ii

∏i
j=1 sin

2 θ
(i−j)
i , in Eqn.

(4.11)).

4.2. Row-wise Downdating. In the previous section, the preconditioning matrix T for the

given lattice basis matrix become a good initial parameter to find the new preconditioning

matrix when a new row is updated. Similarly, it could also be a good initial parameter when

the existing row is removed. In this section, given H in Eqn. (3.1) with preconditioning matrix

T, we find the new preconditioning matrix Td after the first row h(1)T is removed:

Gd = HdTd, H =

[
h(1)T

Hd

]
, Hd ∈ RM−1×N (4.12)

where Gd is lattice reduced.
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Since the LLL algorithm is independent on the orthogonal part of QR decomposition, we

first start from the following equation as:

HT
dHd = HTH− h(1)h(1)T =

[
HT h(1)

] [IN 0
0 −1

] [
H

h(1)T

]
. (4.13)

Since HTH = T−T R̃T R̃T−1, Eqn. (4.13) can be written as:

HT
dHd = T−T R̃T R̃T−1 − h(1)h(1)T

=
[
T−T R̃T h(1)

] [IN 0
0 −1

] [
R̃T−1

h(1)T

]
= T−T

[
R̃T TTh(1)

] [IN 0
0 −1

] [
R̃

h(1)TT

]
T−1. (4.14)

Therefore,

TTHT
dHdT =

[
R̃T TTh(1)

] [IN 0
0 −1

] [
R̃

h(1)TT

]
. (4.15)

Like the Cholesky downdating,

[
R̃

h(1)TT

]
can be then be recovered into the triangular form,

R̃in
d , by applying a total of N hyperbolic rotations [19]. Accordingly, the new preconditioning

matrix Td can be found with initial parameters R̃in
d and T.

5. ROUNDING ERROR ANALYSIS

In this section we look into the effect of the rounding errors during the updating/downdating

methods on the process of the LLL algorithm, beginning with the column-wise updating in

Section 3.1. It is assumed that the computed R̂ of R in Eqn. (3.1) has the following form as:

R̂ = R+ δR, ‖δri‖2 ≤ ζ‖ri‖2, (5.1)

where δR is the computational error of R and δri is the ith column of δR. From the results in

[13, 14], the computed ŵ and q̂ in Eqn. (3.5) have the following forms as:

ŵ = w + δw, ‖δw‖2 ≤ Mεp‖w‖2, (5.2)

q̂ = q+ δq, ‖δq‖2 ≤ (M + 1)εp‖q‖2 (5.3)

where δw and δq are the computational errors and εp is the unit roundoff. The computed initial

parameter
ˆ̃R
in

u for the LLL algorithm can then be computed as follows:

ˆ̃R
in

u = R̃in
u + δR̃in

u , ‖δr̃ini ‖2 ≤ ζ ′‖r̃ini ‖2, (5.4)

where δr̃ini is the ith column of δR̃in
u and ζ ′ = max(ζ, (M + 2)εp).

Since the computational complexity and the rounding errors are mainly dependent on two-

reduction steps, we would start from analyzing two-reduction step in Table 1 with the initial
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parameter (5.4). As analyzed in [20, 14], there are exact plane rotations Û1, ..., ÛP such that

for any vector v

fl(UP ...U1v) = ÛP ...Û1v + g, (5.5)

where ‖g‖2 � 6P‖v‖2εp. Therefore, the error bound after one two-reduction step can be given

as:

ˆ̃R
(1)

u = R̃(1)
u + δR̃(1)

u , ‖δr̃(1)i ‖2 ≤ 6(‖r̃(1)i ‖2 + ‖δr̃(1)i ‖2)εp ≤ 6(1 + ζ ′)εp‖r̃(1)i ‖2. (5.6)

In size-reduction step that follows, the computed μ̂ is given as

μ̂ =

⌈
r̂
(1)
ij

r̂
(1)
ii

⌋
=

⌈
r
(1)
ij

r
(1)
ii

(1 +
e
(1)
ij − e

(1)
ii

1 + e
(1)
ii

)

⌋
, (5.7)

where e
(1)
ij =

δr
(1)
ij

r
(1)
ij

. Let
r
(1)
ij

r
(1)
ii

= m + α, where m is an integer and α is a real number within

[−0.5, 0.5); Eqn. (5.7) can then be written as:

μ̂ =

⌈
m+ α+

(
e
(1)
ij − e

(1)
ii

1 + e
(1)
ii

)
(m+ α))

⌋
. (5.8)

Assuming that ∣∣∣∣∣α+

(
e
(1)
ij − e

(1)
ii

1 + e
(1)
ii

)
(m+ α)

∣∣∣∣∣ < 0.5, (5.9)

then μ̂ = m = μ which implies that T has no computational error and the modular operation

can eliminate the effect of the previous rounding errors on T under the condition of Eqn. (5.9).

Note that we would not consider

∣∣∣∣α+

(
e
(1)
ij −e

(1)
ii

1+e
(1)
ii

)
(m+ α)

∣∣∣∣ ≥ 0.5 in this paper and leave the

analysis of its effect and the method to remove it as future works.

After size-reduction step,

r̂
(2)
ij = r̂

(1)
ij −mr̂

(1)
ii = r

(1)
ij + δr

(1)
ij −m(r

(1)
ii + δr

(1)
ii ),

= αr
(1)
ii + δr

(1)
ij −mδr

(1)
ii ,

= r
(2)
ij + δr

(2)
ij , (5.10)
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where r
(2)
ij = αr

(1)
ii and

|δr(2)ij | = |δr(1)ij −mδr
(1)
ii |,

= |δr(1)ij − r
(1)
ij

r
(1)
ii

δr
(1)
ii + αδr

(1)
ii |,

≤ 12(1 + ζ ′)εp|r(1)ij |+ 3(1 + ζ ′)εp|r(1)ii |,
≤ 15(1 + ζ ′)εpmax(|r(1)ij |, |r(1)ii |). (5.11)

Therefore, if Nu
s two-reduction steps are required to achieve Tu, the error is given as:

‖δru‖2 ≤ 15Nu
s (1 + ζ ′)εpB′, (5.12)

where B′ = max{‖h1‖2, ..., ‖hN‖2}. Therefore, it shows that the column-wise LLL updating

process is stable. As pointed in [15], the column-wise updating/downdating and row-wise up-

dating of orthogonal decompositions are numerically stable. Similarly the process to compute

the initial parameters for column-wise LLL downdating and row-wise LLL updating is also

stable and the above analysis is still valid. For the row-wise LLL downdating, the hyperbolic

rotations are used to compute the initial upper triangular matrix. Based on [16, 17], the hy-

perbolic rotation is also proved to be mixed forward-backward stable. Therefore, the above

analysis can also be easily extended to see that the row-wise LLL downdating is stable.

6. NUMERICAL RESULTS

In this section, we run the Monte-Carlo simulations to evaluate the performance of the pro-

posed column-wise updating/downdating and the row-wise updating/downdating methods. In

the simulations, each element of the lattice basis matrix H is drawn from the uniform distribu-

tion on the unit interval [0, 1]. Newly updated column vector hc and row vector hT
r also follow

the uniform distribution on the unit interval. All the simulations are run by using MATLAB on

Windows XP with 2.13 GHz CPU and 2GB memory.

6.0.1. Column-wise LLL updating and downdating. Table 3 lists the average of κ(Ha), κ(HaT1),
and κ(HaT2), for various column sizes when a new column is appended, where Ha = [Hhc],

H ∈ R(N+2)×N , hc ∈ R(N+2)×1 and κ(A) denotes the condition number of a matrix A. The

preconditioning matrices T1 and T2 are, respectively, obtained by using the updating method

and by using the conventional LLL. In Table 3, the average number of two-reduction steps

performed when the LLL algorithm is applied to Ha (denoted as Nt) and the average num-

ber of two-reduction steps performed when the proposed updating method is applied, given

the reduced lattice bases of H (denoted as Nu) are also compared. For reference, the average

number of two-reduction steps performed when the LLL algorithm is applied to H (denoted as

No) is also evaluated. Finally, tu and tt are the average computing times per one sample in mil-

liseconds to get the preconditioning matrix with and without the proposed updating algorithm,

respectively.
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TABLE 3. Comparison of the average condition numbers and the average

number of two-reduction steps for the column-wise updating method.

Size (N ) κ(Ha) κ(HaT1) κ(HaT2) Nu Nt tu(ms) tt(ms)
4 24.35 2.65 2.65 3.30 7.71 0.17 0.35

6 40.26 3.25 3.25 5.03 15.30 0.25 0.67

8 57.37 4.14 4.14 6.84 24.28 0.35 1.08

10 78.28 5.40 5.40 8.16 33.30 0.44 1.53

12 100.20 7.05 7.05 9.14 41.67 0.52 2.00

14 123.02 9.12 9.12 10.03 49.28 0.60 2.48

16 149.60 11.69 11.69 10.49 55.46 0.68 2.96

18 171.69 14.67 14.67 10.30 60.48 0.73 3.40

20 209.06 18.11 18.11 10.47 65.23 0.81 3.88

22 234.12 21.77 21.77 10.53 69.34 0.89 4.36
...

...
...

...

50 806.54 111.40 111.40 10.51 121.31 2.04 12.42

60 1099.18 159.42 159.42 10.40 136.28 2.50 15.70

70 1286.72 214.41 214.41 10.54 151.00 3.02 19.17

80 1550.84 275.22 275.22 10.37 163.56 3.53 22.61

90 1912.26 340.88 340.88 10.76 177.44 4.17 26.53

500 22775 6343.7 6343.7 9.86 616.30 55.29 316.66

1000 68148 19950 19950 10.59 1121.1 223.13 1259.78

From the results of the condition numbers, LLL algorithms with or without the updating

algorithm make the general lattice basis matrices better-conditioned and their outputs exhibit

the same condition numbers. In comparison of the average numbers of the two-reduction steps,

LLL algorithm with the updating method performs much less two-reduction steps, that is, the

updating method removes the redundant computational complexities.

Remark 2. In the comparison of tu and tt, LLL with the updating algorithm takes roughly
2 ∼ 6 times less computing time than that without updating algorithm and its ratio goes
higher as the matrix size (N) becomes larger in a certain point. Interestingly, the ratio of tu
and tt tends to be saturated as N increases, while the ratio of Nu and Nt does not. This is
because the numbers of while loop iterations in both cases are, respectively, given by N +Nu

and N + Nt, which prevents the computing time ratio from going infinity. In addition, Nu is
saturated (around 10) as N increases, because the LLL reduction conditions (Eqns. (3) and
(4)) are checked with Tin

u and R̃in
u of Eqn. (12) in the proposed updating algorithm.

Table 4 shows the data for various column size when an existing column is removed. The

matrix Hb denotes the submatrix of H (= [Hb hN ] ∈ R(N+1)×N ). The condition numbers,

κ(Hb), κ(HbT1), and κ(HbT2), are evaluated where T1 and T2 are, respectively, obtained

by the downdating method and the conventional LLL. The average numbers of two-reduction
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TABLE 4. Comparison of the average condition numbers and the average

number of two-reduction steps for the column-wise downdating method.

Size (N ) κ(Hb) κ(HbT1) κ(HbT2) Nu Nt tu(ms) tt(ms)
4 7.31 2.13 2.08 0.93 2.28 0.07 0.12

6 14.76 2.65 2.61 2.10 7.07 0.14 0.32

8 23.98 3.28 3.26 3.22 13.69 0.22 0.61

10 33.50 4.16 4.18 4.21 21.19 0.31 0.97

12 45.49 5.35 5.39 4.89 28.99 0.39 1.35

14 59.29 6.91 6.99 5.41 36.07 0.48 1.75

16 71.79 8.83 8.94 5.94 42.06 0.56 2.16

18 85.31 11.11 11.25 6.05 47.56 0.64 2.56

20 101.70 13.79 13.91 5.97 52.51 0.71 2.97

22 117.44 16.76 16.85 5.94 56.69 0.80 3.40
...

...
...

...

50 417.85 89.70 89.83 5.83 109.18 2.09 10.47

60 547.65 129.61 129.81 5.87 124.31 2.61 13.38

70 685.25 174.98 175.34 5.79 138.95 3.16 16.46

80 841.10 225.33 225.93 5.80 151.92 3.76 19.61

90 1007.25 280.32 281.06 5.74 165.57 4.35 22.97

500 13633 5315.7 5370.8 5.90 605.89 61.61 291.26

1000 37715 16432 16356 6.13 1108.7 223.88 1013.15

steps with/without the downdating method, respectively denoted as Nu and Nt, are also com-

pared. From the results of the condition numbers, HbT1 and HbT2 have similar condition

numbers, lower than that for Hb. In comparison of the average numbers of the two-reduction

steps, the LLL algorithm with the downdating method performs much less two-reduction steps.

Accordingly, its time consumption (tu) is also less than that (tt) for the LLL algorithm with-

out the downdating method. Note that the average computing time of the conventional LLL

algorithm (tt) in Table 3 is slightly higher than that in Table 4 because the matrix size of Ha is

larger than that of Hb. In addition, as N becomes larger, the significant gap can be observed

because the numbers of while loop iterations dominate in the computing time (see also Remark

2).

6.0.2. Row-wise LLL updating and downdating. Table 5 compares the condition numbers for

the outputs with/without the row-wise updating method for Hc, where Hc = [hT
r ; H], H ∈

R(N+1)×N , and hT
r ∈ R1×N . Here, T1 and T2 are, respectively, obtained by the updating

method and the conventional LLL. The numbers of two-reduction steps are also compared.

Similarly to the case of the column-wise updating, the row-wise updating method can also

reduce the computational complexities given the preconditioning matrix for the lattice basis

matrix before a new row is updated.
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TABLE 5. Comparison of the average condition numbers and the average

number of two-reduction steps for the row-wise updating method.

Size (N ) κ(Hc) κ(HcT1) κ(HcT2) Nu Nt tu(ms) tt(ms)
4 10.85 2.34 2.35 0.76 4.40 0.07 0.21

6 19.17 2.88 2.89 1.65 10.24 0.13 0.46

8 29.01 3.63 3.68 2.68 17.40 0.20 0.78

10 39.50 4.65 4.75 3.81 25.07 0.28 1.15

12 51.68 5.96 6.14 4.91 32.71 0.38 1.56

14 64.76 7.64 7.91 6.02 39.25 0.48 1.96

16 78.75 9.69 10.06 7.05 44.77 0.59 2.35

18 93.17 12.09 12.49 7.72 50.20 0.70 2.78

20 110.18 14.81 15.35 8.61 54.77 0.83 3.18

22 126.33 17.96 18.47 9.19 59.02 0.95 3.60
...

...
...

...

50 432.43 94.17 93.62 13.61 110.70 2.86 10.71

60 558.73 136.06 134.19 13.86 125.73 3.58 13.61

70 707.48 182.51 180.48 14.61 140.03 4.38 16.70

80 870.18 233.50 231.08 15.11 153.54 5.24 19.91

90 1027.72 291.84 288.09 15.66 166.44 6.15 23.24

500 13324 5400.4 5350.3 19.52 603.41 86.85 289.76

1000 38281 16890 16455 19.38 1108.9 346.82 1102.32

In Table 6, the condition numbers and the numbers of two-reduction steps are compared for

the outputs with and without the row-wise downdating method for the submatrix Hd of H,

where H = [h(1)T ; Hd], H ∈ R(N+3)×N , and h(1)T ∈ R1×N . Similarly, T1 and T2 are,

respectively, obtained by the downdating method and the conventional LLL. It can be found

that the proposed row-wise downdating method also requires much less two-reduction steps

and simultaneously exhibits a similar condition numbers of LLL reduced matrices to that using

the LLL algorithm without the row-wise downdating method.

7. CONCLUDING REMARKS

In this paper, we propose the LLL updating and downdating methods when a new basis col-

umn (or row) is added or when an existing basis column (or row) is removed in a given lattice

basis matrix. Through the proposed updating and downdating methods, the preconditioning

matrix for the original lattice basis matrix is modified to provide a suitable initial parameter

holding the information of the original reduced bases, eliminating the redundant complexities

in finding newly updated preconditioning matrix. Moreover, through the rounding error analy-

sis, the LLL updating/downdating methods are shown stable. The simulation results reveal that

the proposed updating and downdating methods reduce the computational complexities giving
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TABLE 6. Comparison of the average condition numbers and the average

number of two-reduction steps for the row-wise downdating method.

Size (N ) κ(Hd) κ(HdT1) κ(HdT2) Nu Nt tu(ms) tt(ms)
4 10.94 2.33 2.34 0.65 4.40 0.07 0.21

6 18.78 2.88 2.89 1.61 10.16 0.12 0.45

8 29.22 3.64 3.68 3.03 17.50 0.20 0.78

10 40.02 4.68 4.73 4.55 25.28 0.29 1.16

12 52.14 6.07 6.15 6.31 32.48 0.39 1.54

14 64.52 7.78 7.92 7.87 39.36 0.50 1.96

16 78.94 9.85 10.04 8.90 44.69 0.61 2.34

18 92.90 12.30 12.52 9.88 50.06 0.71 2.76

20 109.73 15.05 15.31 10.55 54.48 0.82 3.16

22 127.97 18.25 18.50 11.14 59.00 0.93 3.60
...

...
...

...

50 432.02 93.40 93.88 16.08 110.55 2.62 10.72

60 555.71 133.91 133.67 16.80 125.25 3.29 13.58

70 700.48 180.54 179.74 17.47 140.07 4.00 16.70

80 858.56 231.99 231.59 18.03 153.77 4.79 19.92

90 1026.08 286.81 285.71 18.72 167.17 5.60 23.27

500 7508.1 3994.2 3959.2 19.09 592.89 64.53 255.44

1000 20403 12280 12237 18.99 1096.8 239.46 907.57

the preconditioning matrix which transforms the lattice basis matrix into a better-conditioned

matrix.
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