References
- Akuthota, B., Hughes, D., Zoughi, R., Myers, J. and Nanni, A. (2004), "Near field microwave detection of disbond in fiber reinforced polymer composites used for strengthening concrete structures and disbond repair verification", J. Mater. Civil Eng.-ASCE, 16(6), 540-546. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:6(540)
- Bhalla, S. and Soh, C.K. (2003), "Structural impedance damage diagnosis by piezo-transducers", J. Earthq. Eng. Struct. D., 32, 1897-1916. https://doi.org/10.1002/eqe.307
- Bhalla, S. and Soh, C.K. (2004), "Health monitoring by piezo-impedance transducers I: modeling", J. Aerospace Eng., 17, 154-165. https://doi.org/10.1061/(ASCE)0893-1321(2004)17:4(154)
- Davor, M. and Richard, M., (1998), "Thermal imaging technique to detect delamination in CFRP plated concrete", SPI proceedings, 3396, 22-27.
- Dow Corning commercial site, http://www.dowcorning.com/
- EN 2561 (1995), Carbon fibre reinforced plastics-Unidirectional laminates-Tensile test parallel to the fibre direction, European Committee for Standardization, Brussels.
- Giurgiutiu, V., Harries, K.A., Petrou, M.F., Bost, J. and Quattlebaum, J. (2003), "Disbond detection with piezoelectric wafer active sensors in RC structures strengthened with FRP composite overlays", J. Earthq. Eng. Eng. Vib., 2(2), 213-224. https://doi.org/10.1007/s11803-003-0005-9
- Giurgiutiu, V. and Xu, B. (2004), "Development of a field-portable small-size impedance analyzer for structural health monitoring using the electromechanical impedance technique", Proc. SPIE 5391, Smart Structures and Materials 2004: Sensors and Smart Structures Technologies for Civil, Mechanical, andAerospace Systems, doi: 10.1117/12.541343.
- Kim, S.D., In, C.W., Cronin, K.E., Sohn, H. and Harries, K.A. (2007), "A reference-free NDT technique for debonding detection in CFRP strengthened RC structures", J. Struct. Eng.-ASCE, 8, 1080-1091.
- Kim, S.B., Kim, J.H., Nam, J.W., Kang, S.H. and Byeon, K.J. (2008), "Bond-slip model of interface between CFRP sheets and concrete beams strengthened with CFRP", Korea Concrete Institute, 20(4), 477-486. https://doi.org/10.4334/JKCI.2008.20.4.477
- Liang, C., Sun, F.P. and Rogers, C.A. (1994), "Coupled Electro-mechanical analysis of adaptive material systems determination of the actuator power consumption and system energy transfer", J. Intel. Mat. Syst. Str., 5(1), 15-20.
- Oehlers, D.J. (2006), "Ductility of FRP plated flexural members", Cement Concrete Comp., 28(10), 898-905. https://doi.org/10.1016/j.cemconcomp.2006.07.006
- Overly, T.G., Park, G., Farinholt, K.M. and Farrar, C.R. (2009), "Piezoelectric active-sensor diagnostics and validation using instantaneous baseline data", IEEE Sens. J., 9, 1414-1421. https://doi.org/10.1109/JSEN.2009.2018351
- Park, S., Park, G., Yun, C.B. and Farrar, C.R. (2009), "Sensor self-diagnosis using a modified impedance model for active sensing-based structural health monitoring", J. Struct. Health Monit., 8, 71-82. https://doi.org/10.1177/1475921708094792
- Park, G., Farrar, C.R., Scalea, F.L. and Coccia, S. (2006a), "Performance assessment and validation of piezoelectric active-sensors in structural health monitoring", Smart Mater. Struct., 15(6), 1673. https://doi.org/10.1088/0964-1726/15/6/020
- Park, G., Farrar, C.R., Rutherford, A.C. and Robertson, A.N. (2006b), "Piezoelectric active sensor self-diagnostics using electrical admittance measurements", J. Vib. Acoust., 128(4), 469-476. https://doi.org/10.1115/1.2202157
- Park S., Kim, J.W., Lee C. and Park, S.K. (2011), "Impedance-based wireless debonding condition monitoring of CFRP laminated concrete structures", NDT&E Int., 44, 232-238. https://doi.org/10.1016/j.ndteint.2010.10.006
- Peairs, D, Grisso, B., Inman, D., Page, K., Athman, R. and Margasahayam, R. (2003), "Proof-of-concept application of impedance-based health monitoring on space shuttle ground structures", NASA-TM-2003-211193.
- Providakis, C.P., Stefanaki, K.D., Voutetaki, M., Tsompanakis, J. and Stavroulaki, M. (2013), "Damage detection in concrete structures using a simultaneously activated multi-mode PZT active sensing system: Numerical modelling", Struct. Infrastruct. E., 10(11), 1451-1468. https://doi.org/10.1080/15732479.2013.831908
- Saafi, M. and Sayyah, T. (2000), "Health monitoring of concrete structures strengthened with advanced composite materials using piezoelectric transducers", Composites: Part B, 32, 333-342.
- Triantafillou, T.C. (2001), "Seismic retrofitting of structures using FRPs", Progress Struct. Eng. Mater., 3(1), 57-65. https://doi.org/10.1002/pse.61
- Tseng, K.K.H. and Naidu, A.S.K. (2001), "Non-parametric damage detection and characterization using piezoceramic material", Smart Mater. Struct., 11, 317-329.
- Yang, Y., Hu, Y. and Lu, Y. (2008), "Sensitivity of PZT impedance sensors for damage detection of concrete structures", Sensors, 8, 327-346. https://doi.org/10.3390/s8010327
Cited by
- Modeling of the attenuation of stress waves in concrete based on the Rayleigh damping model using time-reversal and PZT transducers vol.26, pp.10, 2017, https://doi.org/10.1088/1361-665X/aa80c2
- Hysteretic Behavior of Steel Reinforced Concrete Columns Based on Damage Analysis vol.9, pp.4, 2019, https://doi.org/10.3390/app9040687
- A PZT-Based Electromechanical Impedance Method for Monitoring the Soil Freeze–Thaw Process vol.19, pp.5, 2015, https://doi.org/10.3390/s19051107
- Stress and damage localization monitoring in fiber-reinforced concrete using surface-mounted PZT sensors vol.31, pp.2, 2015, https://doi.org/10.1088/1361-6501/ab466d
- Condition assessment of bridge pier using constrained minimum variance unbiased estimator vol.7, pp.4, 2015, https://doi.org/10.12989/smm.2020.7.4.319