DOI QR코드

DOI QR Code

Nonlinear large deformation dynamic analysis of electroactive polymer actuators

  • 투고 : 2014.03.24
  • 심사 : 2014.07.26
  • 발행 : 2015.06.25

초록

Electroactive polymers have attracted considerable attention in recent years due to their sensing and actuating properties which make them a material of choice for a wide range of applications including sensors, biomimetic robots, and biomedical micro devices. This paper presents an effective modeling strategy for nonlinear large deformation (small strains and moderate rotations) dynamic analysis of polymer actuators. Considering that the complicated electro-chemo-mechanical dynamics of these actuators is a drawback for their application in functional devices, establishing a mathematical model which can effectively predict the actuator's dynamic behavior can be of paramount importance. To effectively predict the actuator's dynamic behavior, a comprehensive mathematical model is proposed correlating the input voltage and the output bending displacement of polymer actuators. The proposed model, which is based on the rigid finite element (RFE) method, consists of two parts, namely electrical and mechanical models. The former is comprised of a ladder network of discrete resistive-capacitive components similar to the network used to model transmission lines, while the latter describes the actuator as a system of rigid links connected by spring-damping elements (sdes). Both electrical and mechanical components are validated through experimental results.

키워드

참고문헌

  1. Amemiya, T., Hashimoto, K. and Fujishima, A. (1993), "Frequency-resolved faradaic processes in polypyrrole films observed by electromodulation techniques: electrochemical impedance and color impedance spectroscopies", J. Phys. Chem., 97(16), 4187-4191. https://doi.org/10.1021/j100118a040
  2. Amiri Moghadam, A.A., Moavenian, M. and Torabi, K., (2010), "Takagi-Sugeno fuzzy modelling and parallel distribution compensation control of conducting polymer actuators", J. Syst. Control Eng., 224(1), 41-51.
  3. Amiri Moghadam, A.A., Moavenian, M. and Ekhteraei Tousi, H. (2011a), "Modeling and robust control of a soft robot based on conjugated polymer actuators", Model. Iden. Control, 14(3), 216-226. https://doi.org/10.1504/IJMIC.2011.042657
  4. Amiri Moghadam, A.A., Torabi, K. and Moavenian, M. (2011b), "Finite element modeling and robust control of fast trilayer polypyrrole bending actuators", Int. J. Appl. Electrom., 35, 281-305.
  5. Amiri Moghadam, A.A., Moavenian, M., Torabi, K. and Tahani, M. (2011c), "Analytical dynamic modeling of fast trilayer polypyrrole bending actuators", Smart Mater. Struct., 20(11), 1-9.
  6. Amiri Moghadam. A.A. (2012), Dynamic modeling and robust control of a micro robot based on fast trilayer polypyrrole, Ph.D. Dissertation, Ferdowsi University of Mashhad, Mashhad.
  7. Amiri Moghadam, A.A., Torabi, K., Moavenian, M. and Davoodi, R. (2012), "Dynamic modeling and robust control of an l-shaped micro robot based on fast trilayer polypyrrole bending actuators", J. Intel. Mat. Syst. Str., 24(4), 484-498. https://doi.org/10.1177/1045389X12463619
  8. Amiri Moghadam, A.A., Hong, W., Kouzani, A., Kaynak, A., Zamani, R. and Montazami, R. (2014), "Nonlinear dynamic modeling of ionic polymer conductive network composite actuators using rigid finite element method", Sensor. Actuat. A, DOI: 10.1016/j.sna.2014.07.012.
  9. Bar-Cohen, Y., Xue, T., Shahinpoor, M., Simpson, J. and Smith, J. (1998), "Flexible, low-mass robotic arm actuated by electroactive polymers and operated equivalently to human arm and hand", Proceedings of the 3rd Conf. on Robotics for Challenging Environments, Albuquerque, New Mexico, USA.
  10. Bar-Cohen, Y. (2001), Electroactive polymer (eap) actuators as artificial muscles: reality, potential, and challenges, SPIE, Bellingham, WA, USA.
  11. Bowers, T.A. (2004), Modeling, simulation, and control of a polypyrrole-based conducting polymer actuator, PhD Dissertation, MIT, Massachusetts.
  12. Carpi, F. and Smela, E. (2009), Biomedical Applications of Electroactive Polymer Actuators, London, UK, John Wiley & Sons Ltd.
  13. Chen, Z., Shatara, S. and Tan, X. (2010), "Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite caudal fin", IEEE/ASME T. Mechatron., 15, 448-59. https://doi.org/10.1109/TMECH.2009.2027812
  14. Christophersen, M., Shapiro, B. and Smela, E. (2006), "Characterization and modelling of PPy bilayer microactuators. Part 1. Curvature", Sensor. Actuat. B - Chem., 115, 596-609. https://doi.org/10.1016/j.snb.2005.10.023
  15. Collins, N.E., Eglese, R.W. and Golden, B.L. (1988), "Simulated annealing-An annotated bibliography", Am. J. Mathematical Management Sci., 8, 209-308.
  16. Daum, P., Lenhard, J.R., Rolison, D. and Murray, R.W. (1980), "Diffusional charge transport through ultrathin films of radiofrequency plasma polymerized vinylferrocene at low temperature", J. Am. Chem. Soc., 102(14), 4649-4653. https://doi.org/10.1021/ja00534a014
  17. Della Santa, A., De Rossi, D. and Mazzoldi, A. (1997), "A Characterization and modeling of a conducting polymer muscle-like linear actuator", Smart Mater. Struct., 6(1), 23-34. https://doi.org/10.1088/0964-1726/6/1/003
  18. Du, P., Lin, X. and Zhang, X. (2010), "A multilayer bending model for conducting polymer actuators", Sensor. Actuat. A- Phys., 163(1), 240-246. https://doi.org/10.1016/j.sna.2010.06.002
  19. Fang, Y., Tan, X., Shen, Y., Xi, N. and Alici, G. (2008a), "A scalable model for trilayer conjugated polymer actuators and its experimental validation", Mater. Sci. Eng., 28(3), 421-428. https://doi.org/10.1016/j.msec.2007.04.024
  20. Fang, Y., Tan, X. and Alici, G. (2008b), "Redox level-dependent impedance model for conjugated polymer actuators", Sensor. Actuat. B - Chem., 132(1), 182-190. https://doi.org/10.1016/j.snb.2008.01.024
  21. Hara, S., Zama, T., Takashima, W. and Kaneto, K. (2005), "Free-standing gel-like polypyrrole actuators doped with bis (perfluoroalkylsulfonyl) imide exhibiting extremely large strain", Smart Mater. Struct., 14(6), 481-494.
  22. Haus, H., Matysek, M., Mossinger, H. and Schlaak, H.F. (2013), "Modelling and characterization of dielectric elastomer stack actuators", Smart Mater. Struct., 22(10), 1-13.
  23. Jager, E., Smela, E. and Inganas, I. (2000), "Microfabricating conjugated polymer actuators", Science, 290, 1540-1545. https://doi.org/10.1126/science.290.5496.1540
  24. John, S.W., Alici, G. and Cook, C.D. (2008), "Validation of resonant frequency model for polypyrrole trilayer actuators", IEEE/ASME T. Mechatron., 13(4), 401-409. https://doi.org/10.1109/TMECH.2008.2000883
  25. John, S.W., Alici, G. and Cook, C.D. (2010), "Inversion-based feedforward control of polypyrrole trilayer bender actuators", IEEE/ASME T. Mechatro., 15(1), 149-156. https://doi.org/10.1109/TMECH.2009.2020732
  26. Kaal, W., Herold, S. and Melz, T. (2010), "Modeling approaches for electroactive polymers", SPIE Proceedings San Diego, USA, 7642, 1-11.
  27. Kaneto, K., Kaneko, M., Min, Y. and MacDiarmid, A.G. (1995), "Artificial muscle: electromechanical actuators using polyaniline films", Synthetic Metals, 71(1-3), 2211-2212. https://doi.org/10.1016/0379-6779(94)03226-V
  28. Kaynak, A., Yang, C., Lim, Y.C. and Kouzani, A. (2011), "Electrochemical fabrication and modelling of mechanical behavior of a tri-layer polymer actuator", Mater. Chem. Phys., 125(1-2), 113-117. https://doi.org/10.1016/j.matchemphys.2010.08.080
  29. Kaynak, A. (1997), "Effect of synthesis parameters on the surface morphology of polypyrrole thin films", Mater. Res. Bull., 32(3), 271-285. https://doi.org/10.1016/S0025-5408(96)00200-0
  30. Madden, D.W. (2000), Conducting polymer actuators, PhD Dissertation, MIT, Massachusetts.
  31. Madden, P.G.A. (2003), Development and modeling of conducting polymer actuators and the fabrication of a conducting polymer based feedback loop, PhD Dissertation, MIT, Massachusetts.
  32. Madden, J., Vandesteeg, N., Madden, P., Takshi, A., Zimet, R., Anquetil, P., Lafontaine, S., Wierenga, P. and Hunter, I.W. (2004), "Artificial muscle technology: physical principles and naval prospects", IEEE J. Oceanic Eng., 29(3), 706-728. https://doi.org/10.1109/JOE.2004.833135
  33. Mutlu, R., Alici, G. and Li, W. (2013a), "An effective methodology to solve inverse kinematics of electroactive polymer actuators modelled as active and soft robotic structures", Mech. Machine Theory, 67, 94-110. https://doi.org/10.1016/j.mechmachtheory.2013.04.005
  34. Mutlu, R., Alici, G. and Li, W. (2013b), "Electroactive polymers as soft robotic actuators: electromechanical modeling and identification", IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Wollongong, Australia, 1096-1101.
  35. Nguyena, C.H., Alici, G. and Wallace, G. (2012), "Modelling trilayer conjugated polymer actuators for their sensorless position control", Sensor. Actuat. A Phys., 185, 82-91. https://doi.org/10.1016/j.sna.2012.07.018
  36. Otero, T.F. and Teresa Cortes, M. (2001), Characterization of triple layers Smart Structures and Materials: Electroactive Polymer Actuators and Devices; Proc. SPIE 4329, Smart Structures and Materials:Electroactive Polymer Actuators and Devices, Newport Beach, CA, USA, July.
  37. Punning, A. (2007), Electromechanical characterization of ion polymer metal composite sensing actuators, Ph.D. Dissertation, Tartu University, Tartu, Estonia.
  38. Shahinpoor, M., Kim, J.K. and Mojarrad, M. (2007), Artificial muscles: applications of Advanced Polymeric Nanocomposites, CRC Press LLC, Boca Raton, FL, USA.
  39. Shoa, T., Madden, J.D.W., Nigel, R.M. and Yangb, V. (2010), "Analytical modeling of a conducting polymer-driven catheter", Polymer Int., 59(3), 343-351. https://doi.org/10.1002/pi.2783
  40. Shoa, T., Yoo, D.S., Walus, K. and Madden, J.D.W. (2011), "A dynamic electromechanical model for electrochemically driven conducting polymer actuators", IEEE/ASME T. Mechatron., 16(1), 42-49. https://doi.org/10.1109/TMECH.2010.2090166
  41. Smela, E., Inganas, O. and Lundstrom, I. (1995), "Controlled folding of microsize structures", Science, 268, 1735-1738. https://doi.org/10.1126/science.268.5218.1735
  42. Smela, E. (2003), "Conjugated polymer actuators for biomedical applications", Adv. Mater., 15, 481-494. https://doi.org/10.1002/adma.200390113
  43. Torabi, K. and Amiri Moghadam, A.A. (2012), "Robust control of conjugated polymer actuators considering the spatio-temporal dynamics", J. Syst. Control Eng., 226(6), 806-822.
  44. Tso, C.H., Madden, J.D.W. and Michal, C.A. (2007), "An NMR study of PF6- ions in polypyrrole", Synthetic Metals, 157(10-12), 460-466. https://doi.org/10.1016/j.synthmet.2007.05.001
  45. Unsworth, J., Lunn, B., Innis, P., Jin, Z., Kaynak, A. and Booth, N. (1992), "Technical review: conducting polymer electronics", J. Intel. Mat. Syst. Str., 3(3), 380-395. https://doi.org/10.1177/1045389X9200300301
  46. Wallace, G., Spinks, G., Kane-Maguire, L. and Teasdale, P. (2003), Conductive Electroactive Polymers, CRC Press LLC, Boca Raton, FL, USA.
  47. Warren, M. (2005), Electronic and structural effects on the electrochemistry of polypyrrole, M.Sc. Thesis, University of British Columbia, Vancouver.
  48. Wittbrodt, E., Adamiec-Wojcik, I. and Wojciech, S. (2006), Dynamics of Flexible Multibody Systems Springer-Verlag, Berlin Heidelberg, Germany.
  49. Wu, Y., Alici, G., Spinks, G.M. and Wallace, G. (2006), "Fast trilayer polypyrrole bending actuators for high speed applications", Synthetic Metals, 156(16-17), 1017-1022. https://doi.org/10.1016/j.synthmet.2006.06.022

피인용 문헌

  1. Nonlinear vibration analysis of MSGT boron-nitride micro ribbon based mass sensor using DQEM vol.18, pp.5, 2016, https://doi.org/10.12989/sss.2016.18.5.1029
  2. Development and analysis of a 3D printed hydrogel soft actuator vol.265, 2017, https://doi.org/10.1016/j.sna.2017.08.038
  3. Control-Oriented Modeling of a Polymeric Soft Robot vol.3, pp.2, 2016, https://doi.org/10.1089/soro.2016.0002
  4. Stress and free vibration analysis of piezoelectric hollow circular FG-SWBNNTs reinforced nanocomposite plate based on modified couple stress theory subjected to thermo-mechanical loadings 2017, https://doi.org/10.1177/1077546317706887
  5. Nonlinear dynamic modeling of ultrathin conducting polymer actuators including inertial effects vol.27, pp.11, 2018, https://doi.org/10.1088/1361-665X/aae456