References
- Akavci, S.S., Yerli, H.R. and Dogan, A. (2007) "The first order shear deformation theory for symmetrically laminated composite plates on elastic foundation", Arab. J. Sci. Eng., 32, 341-348.
- Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates restingon nonlinear twoparameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403
- Al Khateeb, S.A. and Zenkour, A.M. (2014), "A refined four-unknown plate theory for advanced plates resting on elastic foundations in hygrothermal environment", Compos. Struct., 111, 240-248. https://doi.org/10.1016/j.compstruct.2013.12.033
- Brischetto, S. (2012), "Hygrothermal loading effects in bending analysis of multilayered composite plates", Comput. Model. Eng. Sci., 88, 367-418.
- Carrera, E. (2002), "Theories and finite elements for multilayered, anisotropic, composite plates and shells", Arch. Comput. Meth. Eng., 9(2), 87-140. https://doi.org/10.1007/BF02736649
- Carrera, E. and Ciuffreda, A. (2005), "A unified formulation to assess theories of multilayered plates for various bending problems", Compos. Struct., 69, 271-293. https://doi.org/10.1016/j.compstruct.2004.07.003
- Cheng, Z.Q. and Batra, R.C. (2000a), "Deflection relationships between the homogeneous Kirchhoff's plate theory and different functionally graded plate theories", Arch. Mech., 52, 143-158.
- Cheng, Z.Q. and Batra, R.C. (2000b), "Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates", J. Sound Vib., 229, 879-895. https://doi.org/10.1006/jsvi.1999.2525
- Chien, R.D. and Chen, C.S. (2006), "Nonlinear vibration of laminated plates on an elastic foundation", Thin Wall. Struct., 44, 852-860. https://doi.org/10.1016/j.tws.2006.08.016
- Chudinovich, I. and Constanda, C. (2000), "Integral representations of the solutions for a bending plate on an elastic foundation", Acta Mech., 139(1-4), 33-42. https://doi.org/10.1007/BF01170180
- Dumir, P.C. (2003), "Nonlinear dynamic response of isotropic thin rectangular plates on elastic foundations", Acta Mech., 71(1-4), 233-244. https://doi.org/10.1007/BF01173950
- Eratll, N. and Akoz, A.Y. (1997), "The mixed finite element formulation for the thick plates on elastic foundations", Comput. Struct., 65, 515-529. https://doi.org/10.1016/S0045-7949(96)00403-8
- Han, J.B. and Liew, K.M. (1997), "Numerical differential quadrature method for Reissner/Mindlin plates on two-parameter foundations", Int. J. Mech. Sci., 39, 977-989. https://doi.org/10.1016/S0020-7403(97)00001-5
- Jaiswal, O.R. and Iyengar, R.N. (1993), "Dynamic response of a beam on elastic foundation of finite depth under a moving force", Acta Mech., 96, 67-83. https://doi.org/10.1007/BF01340701
- Lanhe, W. (2004), "Thermal buckling of a simply-supported moderately thick rectangular FGM plate", Compos. Struct., 64, 211-218. https://doi.org/10.1016/j.compstruct.2003.08.004
- Liew, K.M., Han, J.B., Xiao, Z.M. and Du, H. (1996), "Differential quadrature method for Mindlin plates on Winkler foundations", Int. J. Mech. Sci., 38, 405-421. https://doi.org/10.1016/0020-7403(95)00062-3
- Omurtag, M.H. and Kadioglu, F. (1998), "Free vibration analysis of orthotropic plates resting on Pastrnak foundation by mixed finite element formulation", Comput. Struct., 67, 253-265. https://doi.org/10.1016/S0045-7949(97)00128-4
- Pagano, N.J. (1970), "Exact solutions for rectangular bidirectional composites and sandwich plates", J. Compos. Mater., 4, 20-34. https://doi.org/10.1177/002199837000400102
- Rao, J.S. (1999), Dynamics of Plates, Narosa Publishing House, New York, NY, USA.
- Reddy, J.N. (2000)"Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47, 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
- Reddy, J.N. and Hsu, Y.S. (1980), "Effects of shear deformation and anisotropy on the thermal bending of layered composite plates", J. Therm. Stresses, 3, 475-493. https://doi.org/10.1080/01495738008926984
- Sahin, O.S. (2005), "Thermal buckling of hybrid angle-ply laminated composite plates with a hole", Compos. Sci. Tech., 65, 1780-1790. https://doi.org/10.1016/j.compscitech.2005.03.007
- Shen, H.S. and Zhu, Z.H. (2012), "Postbuckling of sandwich plates with nanotube-reinforced composite face sheets resting on elastic foundations", Eur. J. Mech. A/Solids, 35, 10-21. https://doi.org/10.1016/j.euromechsol.2012.01.005
- Singh, B.N., Lal, A. and Kumar, R. (2007), "Post buckling response of laminated composite plate on elastic foundation with random system properties", Commun. Nonlin. Sci. Numer. Simul., 14, 284-300.
- Tsiatas, G.C. (2010), "Nonlinear analysis of non-uniform beams on nonlinear elastic foundation", Acta Mech., 209, 141-152. https://doi.org/10.1007/s00707-009-0174-3
- Zenkour, A.M., Allam, M.N.M. and Radwan, A.F. (2013), "Bending of cross-ply laminated plates resting on elastic foundations under thermo-mechanical loading", Int. J. Mech. Mater. Des., 9, 239-251. https://doi.org/10.1007/s10999-012-9212-8
- Zenkour, A.M., Allam, M.N.M. and Radwan, A.F. (2014), "Effects of hygrothermal conditions on cross-ply laminated plates resting on elastic foundations", Arch. Civil Mech. Eng., 14, 144-159. https://doi.org/10.1016/j.acme.2013.07.008
- Zenkour, A.M., Allam, M.N.M. and Sobhy, M. (2010), "Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak's elastic foundations", Acta Mech., 212, 233-252. https://doi.org/10.1007/s00707-009-0252-6
- Zenkour, A.M., Allam, M.N.M. and Sobhy, M. (2011), "Bending of a fiber-reinforced viscoelastic composite plate resting on elastic foundations", Arch. Appl. Mech., 81, 77-96. https://doi.org/10.1007/s00419-009-0396-9
- Zenkour, A.M. (2004a), "Buckling of fiber-reinforced viscoelastic composite plates using various plate theories", J. Eng. Math., 50, 75-93. https://doi.org/10.1023/B:ENGI.0000042123.94111.35
- Zenkour, A.M. (2004b), "Thermal effects on the bending response of fber-reinforced viscoelastic composite plates using a sinusoidal shear deformation theory", Acta Mech., 171, 171-187. https://doi.org/10.1007/s00707-004-0145-7
- Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30, 67-84. https://doi.org/10.1016/j.apm.2005.03.009
- Zenkour, A.M. (2009), "The refined sinusoidal theory for FGM plates on elastic foundations", Int. J. Mech. Sci., 51, 869-880. https://doi.org/10.1016/j.ijmecsci.2009.09.026
Cited by
- Stochastic hygro-thermo-mechanically induced nonlinear static analysis of piezoelectric elastically support sandwich plate using secant function based shear deformation theory (SFSDT) vol.05, pp.04, 2016, https://doi.org/10.1142/S2047684116500202
- Electro-mechanical vibration of smart piezoelectric FG plates with porosities according to a refined four-variable theory vol.24, pp.12, 2017, https://doi.org/10.1080/15376494.2016.1196799
- Buckling analysis of higher order graded smart piezoelectric plates with porosities resting on elastic foundation vol.117, 2016, https://doi.org/10.1016/j.ijmecsci.2016.09.012
- Analysis of multilayered composite plates resting on elastic foundations in thermal environment using a hyperbolic model vol.39, pp.7, 2017, https://doi.org/10.1007/s40430-017-0773-1
- Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions vol.24, pp.10, 2018, https://doi.org/10.1177/1077546316672788
- Hygrothermo-mechanical buckling of FGM plates resting on elastic foundations using a quasi-3D model pp.1550-2295, 2019, https://doi.org/10.1080/15502287.2019.1568618
- Vibration analysis of generalized thermoelastic microbeams resting on visco-Pasternak's foundations vol.4, pp.3, 2017, https://doi.org/10.12989/aas.2017.4.3.269
- Quasi-3D Refined Theory for Functionally Graded Porous Plates: Displacements and Stresses vol.23, pp.1, 2015, https://doi.org/10.1134/s1029959920010051
- Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory vol.25, pp.4, 2015, https://doi.org/10.12989/sss.2020.25.4.409
- Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method vol.231, pp.6, 2015, https://doi.org/10.1007/s00707-020-02653-3