References
- Aguiar, R.A.A., Savi, M.A. and Pacheco, P.M.C.L. (2010), "Experimental and numerical investigations of shape memory alloy helical springs", Smart Mater. Struct., 19(2), 025008. https://doi.org/10.1088/0964-1726/19/2/025008
- Aguiar, R.A.A., Savi, M.A. and Pacheco, P.M.C.L. (2013), "Experimental investigation of vibration reduction using shape memory alloys", J. Intel.Mat. Syst. Str., 24(2), 247-261. https://doi.org/10.1177/1045389X12461696
- Alam, M.S., Nehdi, M. and Youssef, M.A. (2008), "Shape memory alloy-based smart rc bridges: overview of state-of-the-art", Smart Struct. Syst., 4(3), 367-389. https://doi.org/10.12989/sss.2008.4.3.367
- Bernardini, D. and Rega, G. (2005), "Thermomechanical modelling, nonlinear dynamics and chaos in shape memory oscillators", Math. Comput. Model., 11(3), 291-314. https://doi.org/10.1080/13873950500076404
- Casciati, S. and Hamdaoui, K. (2008), "Experimental and numerical studies toward the implementation of shape memory alloy ties in masonry structures", Smart Struct. Syst., 4(2), 153-169. https://doi.org/10.12989/sss.2008.4.2.153
- Casciati, S. and Marzi, A. (2010), "Experimental studies on the fatigue life of shape memory alloy bars", Smart Struct. Syst., 6(1), 73-85. https://doi.org/10.12989/sss.2010.6.1.073
- Dhanalakshmi, K., Avinash, A., Umapathy, M. and Marimuthu, M. (2010), "Experimental study on vibration control of shape memory alloy actuated flexible beam", Int. J. Smart Sens. Intell. Syst., 3(2), 156-175.
- dos Santos, B.C. and Savi, M.A. (2009), "Nonlinear dynamics of a nonsmooth shape memory alloy oscillator", Chaos Soliton. Fract., 40(1), 197-209. https://doi.org/10.1016/j.chaos.2007.07.058
- Lagoudas, D.C. ( Ed). (2008), Shape memory alloys: modeling and engineering applications, Springer.
- Lees, A.W., Jana, S., Inman, D.J. and Cartmell, M.P. (2007), "The control of bearing stiffness using shape memory", Proceesings of the International Symposium on Stability Control of Rotating Machinery.
- Machado, L.G., Lagoudas, D.C. and Savi, M.A. (2009), "Lyapunov exponents estimation for hysteretic systems", Int. J. Solids Struct., 46(6), 1269- 1286. https://doi.org/10.1016/j.ijsolstr.2008.09.013
- Machado, L.G. and Savi, M.A. (2003), "Medical applications of shape memory alloys.", Brazilian journal of medical and biological research Revista brasileira de pesquisas medicas e biologicas Sociedade Brasileira de Biofisica et al, 36(6), 683-691.
- Nagaya, K., Takeda, S., Tsukui, Y. and Kumaido, T. (1987), "Active control method for passing through critical speeds of rotating shafts by changing stiffnesses of the supports with use of memory metals", J. Sound Vib., 113(2), 307- 315. https://doi.org/10.1016/S0022-460X(87)80217-1
- Ozbulut, O.E., Hurlebaus, S. and Desroches, R. (2011), "Seismic response control using shape memory alloys: A review", J. Intel. Mat. Syst. Str., 22(14), 1531-1549. https://doi.org/10.1177/1045389X11411220
- Paiva, A. and Savi, M.A. (2006), "An overview of constitutive models for shape memory alloys", Math. Probl. Eng., 2006, 1-30.
- Phillips, J.W. and Costello, G.A. (1972), "Large deflections of impacted helical springs", J. Acoust. Soc. Am., 51(3), 967-973. https://doi.org/10.1121/1.1912946
- Savi, M.A., De Paula, A.S. and Lagoudas, D.C. (2011), "Numerical investigation of an adaptive vibration absorber using shape memory alloys", J. Intel. Mat. Syst. Str., 22(1), 67-80. https://doi.org/10.1177/1045389X10392612
- Savi, M.A. and Pacheco, P.M.C.L. (2002a), "Chaos and hyperchaos in shape memory systems", Int. J. Bifurcat. Chaos, 12(3), 645-657. https://doi.org/10.1142/S0218127402004607
- Savi, M.A. and Pacheco, P.M.C.L. (2002b), "Chaos in a shape memory two-bar truss", Int. J. Nonlinear Mech., 37(8), 1387-1395. https://doi.org/10.1016/S0020-7462(02)00029-X
- Savi, M.A., Sa, M.A., Paiva, A. and Pacheco, P.M.C.L. (2008), "Tensile-compressive asymmetry influence on shape memory alloy system dynamics", Chaos Soliton. Fract., 36(4), 828-842. https://doi.org/10.1016/j.chaos.2006.09.043
- Silva, L.C., Savi, M.A. and Paiva, A. (2013), "Nonlinear dynamics of a rotordynamic nonsmooth shape memory alloy system", J. Sound Vib., 332(3), 608-621. https://doi.org/10.1016/j.jsv.2012.09.018
- Sitnikova, E., Pavlovskaia, E., Ing, J. and Wiercigroch, M. (2012), "Suppressing nonlinear resonances in an impact oscillator using smas", Smart Mater. Struct., 21(7), doi:10.1088/0964-1726/21/7/075028.
- Sitnikova, E., Pavlovskaia, E., Wiercigroch, M. and Savi, M.A. (2010), "Vibration reduction of the impact system by an sma restraint: numerical studies", Int. J. Nonlinear Mech., 45(9), 837-849. https://doi.org/10.1016/j.ijnonlinmec.2009.11.013
- Song, G., Ma, N., Li, L., Penney, N., Barr, T., Lee, H.J. and Arnold, S. (2011), "Design and control of a proof-of-concept active jet engine intake using shape memory alloy actuators", Smart Struct. Syst., 7(1), 1-13. https://doi.org/10.12989/sss.2011.7.1.001
- Torra, V., Isalgue, A., Auguet, C., Carreras, G., Lovey, F.C., Soul, H. and Terriault, P. (2009), "Damping in civil engineering using sma. the fatigue behavior and stability of cualbe and niti alloys", J. Mater. Eng. Perform., 18(5-6), 738-745. https://doi.org/10.1007/s11665-009-9442-6
- Williams, K., Chiu, G. and Bernhard, R. (2002), "Adaptive-passive absorbers using shape memory alloys", J. Sound Vib., 249(5), 835-848. https://doi.org/10.1006/jsvi.2000.3496
Cited by
- Modeling of coupled phase transformation and reorientation in shape memory alloys under non-proportional thermomechanical loading vol.82, 2016, https://doi.org/10.1016/j.ijplas.2016.03.005
- Using 0–1 test to diagnose chaos on shape memory alloy dynamical systems vol.103, 2017, https://doi.org/10.1016/j.chaos.2017.06.016
- Experimental study on the aeroelastic behavior of a typical airfoil section with superelastic shape memory alloy springs 2017, https://doi.org/10.1177/1045389X17721024
- Investigation of Gas Foil Bearings With an Adaptive and Non-Linear Structure vol.13, pp.1, 2015, https://doi.org/10.2478/ama-2019-0001
- Simultaneous Measurements in Shape Memory Alloy Springs to Enable Structural Health Monitoring by Self-Sensing Actuation vol.46, pp.6, 2021, https://doi.org/10.1007/s13369-020-05259-y