DOI QR코드

DOI QR Code

Electromagnetothermoelastic behavior of a rotating imperfect hybrid functionally graded hollow cylinder

  • Saadatfar, M. (Faculty of Mechanical Engineering, K.N. Toosi University of Technology) ;
  • Aghaie-Khafri, M. (Faculty of Mechanical Engineering, K.N. Toosi University of Technology)
  • 투고 : 2013.09.02
  • 심사 : 2014.02.24
  • 발행 : 2015.06.25

초록

The electro-magneto- thermo-elastic behavior of a rotating functionally graded long hollow cylinder with functionally graded piezoelectric (FGPM) layers is analytically analyzed. The layers are imperfectly bonded to its inner and outer surfaces. The hybrid cylinder is placed in a constant magnetic field subjected to a thermo-electro-mechanical loading and could be rested on a Winkler-type elastic foundation. The material properties of the FGM cylinder and radially polarized FGPM layers are assumed to be graded in the radial direction according to the power law. The hybrid cylinder is rotating about its axis at a constant angular velocity. The governing equations are solved analytically and then stresses, displacement and electric potential distribution are calculated. Numerical examples are given to illustrate the effects of material in-homogeneity, magnetic field, elastic foundation, applied voltage, imperfect interface and thermo-mechanical boundary condition on the static behavior of a FG smart cylinder.

키워드

참고문헌

  1. Aghaei khafri, M. and Saadatfar, M. (2013), "Analytical solution For thermo-electro-elastic stress In FGM Hollow Cylinder With Functionally graded piezoelectric layers", Proceeding of the 21st Annual International Conference on Mechanical Engineering, Tehran, Iran, May.
  2. Akbarzadeh, A.H. and Chen, Z.T. (2013), "Hygrothermal stresses in one-dimensional functionally graded piezoelectric media in constant magnetic .eld", Compos. Struct., 97, 317-331. https://doi.org/10.1016/j.compstruct.2012.09.058
  3. Akbarzadeh, A.H. and Chen, Z.T. (2012), "Magnetoelectroelastic behavior of rotating cylinders resting on an elastic foundation under hygrothermal loading", Smart Mater. Struct., 21(12), 125013. https://doi.org/10.1088/0964-1726/21/12/125013
  4. Akbarzadeh, A.H., Babaei, M.H. and Chen, Z.T. (2011), "The thermoelectromagnetoelastic behavior of a rotating functionally graded piezoelectric cylinder", Smart Mater. Struct., 20(6), 065008. https://doi.org/10.1088/0964-1726/20/6/065008
  5. Alibeigloo, A. and Nouri, V. (2010), "Static analysis of functionally graded cylindrical shell with piezoelectric layers using differential quadrature method", Compos. Struct., 92(8), 1775-1785. https://doi.org/10.1016/j.compstruct.2010.02.004
  6. Alibeigloo, A., Kani, A.M. and Pashaei, M.H. (2012), "Elasticity solution for the free vibration analysis of functionally graded cylindrical shell bonded to thin piezoelectric layers", Int. J. Pres. Ves. Piping, 89, 98-111. https://doi.org/10.1016/j.ijpvp.2011.10.020
  7. Alibeigloo, A. (2008), "Static analysis of an anisotropic laminated cylindrical shell with piezoelectric layers using differential quadrature method", J. Mech. Eng. Sci., 222(6), 865-880. https://doi.org/10.1243/09544062JMES866
  8. Alibeigloo, A. (2011), "Thermoelastic solution for static deformations of functionally graded cylindrical shell bonded to thin piezoelectric layers", Compos. Struct., 93(2), 961-972. https://doi.org/10.1016/j.compstruct.2010.06.025
  9. Babaei, M.H. and Chen, Z.T. (2008a), "Analytical solution for electromechanical behavior of a rotating functionally graded piezoelectric hollow shaft", Arch. Appl. Mech., 78(7), 489-500. https://doi.org/10.1007/s00419-007-0172-7
  10. Babaei, M.H. and Chen, Z.T. (2008b), "Exact solutions for radially polarized and magnetized magnetoelectroelastic rotating cylinders", Smart Mater. Struct., 17(2), 025-035.
  11. Chang, C.I. (1975), "The anisotropic rotating disks", Int. J. Mech. Sci., 17(6), 397-402. https://doi.org/10.1016/0020-7403(75)90036-3
  12. Chen, J.Y., Ding, H.J. and Chen, W.Q. (2007), "Three-dimensional analytical solution for a rotating disc of functionally graded materials with transverse isotropy", Arch. Appl. Mech., 77(4), 241-251. https://doi.org/10.1007/s00419-006-0098-5
  13. Chen, W.Q. and Lee, K.Y. (2004), "Exact solution of angle-ply piezoelectric laminates in cylindrical bending with interfacial imperfections", Compos. Struct., 65(3-4), 329-337. https://doi.org/10.1016/j.compstruct.2003.11.008
  14. Chen, W.Q., Cai, J.B., Ye, J.R. and Wang, Y.F. (2004), "Exact three-dimensional solutions of laminated orthotropic piezoelectric rectangular plates featuring interlaminar bonding imperfections modeled by a general spring layer", Int. J. Solids Struct., 41(18-19), 5247-5263. https://doi.org/10.1016/j.ijsolstr.2004.03.010
  15. Chen, W.Q. and Lee, K.Y. (2005), "Benchmark solution of angle-ply piezoelectric-laminated cylindrical panels in cylindrical bending with weak interfaces", Arch. Appl. Mech., 74(7), 466-476. https://doi.org/10.1007/s00419-004-0357-2
  16. Dai, H.L., Fu, Y.M. and Dong, Z.M. (2006), "Exact solutions for functionally graded pressure vessels in a uniform magnetic .eld", Int. J. Solids Struct., 43, 5570-5580. https://doi.org/10.1016/j.ijsolstr.2005.08.019
  17. Dai, H.L. and Fu Y.M. (2007), "Magnetothermoelastic interactions in hollow structures of functionally graded material subjected to mechanical loads", Int. J. Pres. Ves. Piping, 84(3), 132-138. https://doi.org/10.1016/j.ijpvp.2006.10.001
  18. Dai, H.L., Fu, Y.M. and Yang, J.H. (2007) "Electromagnetoelastic solutions for functionally graded piezoelectric solid cylinder and sphere", Acta Mech. Sinica, 23, 55-63. https://doi.org/10.1007/s10409-006-0047-0
  19. Dai, H.L., Hong, L., Fu, Y.M. and Xiao, X. (2010), "Analytical solution for electro-magneto-thermo-elastic behaviors of a functionally graded piezoelectric hollow cylinder", Appl. Math. Model., 34, 343-357. https://doi.org/10.1016/j.apm.2009.04.008
  20. Dai, H.L., Yang, L. and Zheng, H.Y. (2011a), "Magnetothermoelastic analysis of functionally graded hollow spherical structures under thermal and mechanical loads", Solid State Sci., 13(2), 372-378. https://doi.org/10.1016/j.solidstatesciences.2010.11.038
  21. Dai, H.L, Rao, Y.N. and Jiang, H.J. (2011b), "An analytical method for magnetothermoelastic analysis of functionally graded hollow cylinders", Appl. Math. Comput., 218(4), 1467-1477. https://doi.org/10.1016/j.amc.2011.06.030
  22. Dai. H.L., Dai, T. and Zheng, Z.Y. (2012), "Stresses distributions in a rotating functionally graded piezoelectric hollow cylinder", Meccanica, 47(2), 423-436. https://doi.org/10.1007/s11012-011-9447-8
  23. El-Naggar, A.M., Abd-Alla, A.M., Fahmy, A.M. and Ahmed, S.M. (2002) "Thermal stresses in a rotating non-homogeneous orthotropic hollow cylinder", Heat Mass Transfer, 39(1), 41-46. https://doi.org/10.1007/s00231-001-0285-4
  24. Eraslan, A.N. and Akis, T. (2006), "On the plane strain and plane stress solutions of functionally graded rotating solid shaft and solid disk problems", Acta Mech., 181(1-2), 43-63. https://doi.org/10.1007/s00707-005-0276-5
  25. Galic, D. and Horgan, C.O. (2003), "The stress response of radially polarized rotating piezoelectric cylinders", J. Appl. Mech.-ASME, 70(3), 426-435. https://doi.org/10.1115/1.1572900
  26. Genta, G. and Gola, M. (1981), "The stress distribution in orthotropic rotating disks", J. Appl. Mech.-ASME, 48(3), 559-562. https://doi.org/10.1115/1.3157674
  27. Ghorbanpour Arani, A., Kolahchi, R. and Mosallaie Barzoki, A.A. (2011), "Effect of material in-homogeneity on electro-thermo-mechanical behaviors of functionally graded piezoelectric rotating shaft", Appl. Math. Model., 35(6), 2771-2789. https://doi.org/10.1016/j.apm.2010.11.076
  28. Horgan, C.O. and Chan, A.M. (1990), "The stress response of functionally graded isotropic linearly elastic rotating disks", J. Elast., 55(3), 219-230. https://doi.org/10.1023/A:1007644331856
  29. Jabbari, M., Sohrabpour, S. and Eslami, M.R. (2002), "Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads", Int. J. Pres. Ves. Piping, 79(7), 493-497. https://doi.org/10.1016/S0308-0161(02)00043-1
  30. Javanbakht, M., Shakeri, M. and Sadeghi, S.N. (2009), "Dynamic analysis of functionally graded shell with piezoelectric layers based on elasticity", Proc. IMechE Part C: J. Mech. Eng. Sci., 223(9), 2039-2047. https://doi.org/10.1243/09544062JMES1309
  31. Kapuria, S. and Nair, P.G. (2010), "Exact three-dimensional piezothermoelasticity solution for dynamics of rectangular cross-ply hybrid plates featuring interlaminar bonding imperfections", Compos. Sci. Tech., 70(5), 752-762. https://doi.org/10.1016/j.compscitech.2010.01.006
  32. Kiani, Y., Akbarzadeh, A.H., Chen, Z.T. and Eslami, M.R. (2012), "Static and dynamic analysis of an FGM doubly curved panel resting on the Pasternak-type elastic foundation", Compos. Struct., 94(8), 2474-2484. https://doi.org/10.1016/j.compstruct.2012.02.028
  33. Kong, T., Li, D.X. and Wang, X. (2009), "Thermo-magneto-dynamic stresses and perturbation of magnetic .eld vector in a non-homogeneous hollow cylinder", Appl. Math. Model., 33(7), 2939-2950. https://doi.org/10.1016/j.apm.2008.10.003
  34. Li, Y.D. and Lee, K.Y. (2009), "Crack tip shielding and anti-shielding effects of the imperfect interface in a layered piezoelectric sensor", Int. J. Solids Struct., 46, 1736-1742. https://doi.org/10.1016/j.ijsolstr.2008.12.023
  35. Reddy, T.Y. and Srinath, H. (1974), "Elastic stresses in a rotating anisotropic annular disk of variable thickness and variable density", Int. J. Mech. Sci., 16(2), 85-89. https://doi.org/10.1016/0020-7403(74)90078-2
  36. Saadatfar, M. and Razavi, S.A. (2009), "Piezoelectric hollow cylinder with thermal gradient", J. Mech. Sci. Tech., 23, 47-55.
  37. Shakeri, M., Sadeghi, S.N. and Javanbakht, M. (2009), "Dynamic analysis of functionally graded plate integrated with two piezoelectric layers, based on a three-dimensional elasticity solution", Proc. IMechE Part C: J. Mech. Eng. Sci., 223(6), 1297-1309. https://doi.org/10.1243/09544062JMES1333
  38. Shen, H.S. and Noda, N. (2007), "Postbuckling of pressure-loaded FGM hybrid cylindrical shells in thermal environments", Compos. Struct., 77, 546-560. https://doi.org/10.1016/j.compstruct.2005.08.006
  39. Tutuncu, N. (2007), "Effect of anisotropy on stresses in rotating discs", Int. J. Mech. Sci., 37(8), 873-881. https://doi.org/10.1016/0020-7403(94)00097-4
  40. Wang, H.M., Ding, H.J. and Ge, W. (2007), "Transient responses in a two-layered elasto-piezoelectric composite hollow cylinder", Compos. Struct., 79(2), 192-201. https://doi.org/10.1016/j.compstruct.2005.12.005
  41. Wang, H.M. (2011), "Dynamic electromechanical behavior of a triple-layer piezoelectric composite cylinder with imperfect interfaces", Appl. Math. Model., 35, 1765-1781. https://doi.org/10.1016/j.apm.2010.10.008
  42. Wang, H.M. (2010), "Effect of material inhomogeneity on the rotating functionally of a graded orthotropic hollow cylinder", J. Mech. Sci. Tech., 24(9), 1839-1844. https://doi.org/10.1007/s12206-010-0615-x
  43. Wang, X. and Dong, K. (2006), "Magnetothermodynamic stress and perturbation of magnetic .eld vector in a non-homogeneous thermoelastic cylinder", Eur. J. Mech. A/Solids, 25, 98-109. https://doi.org/10.1016/j.euromechsol.2005.07.003
  44. Xiang, H.J. and Shi, Z.F. (2009), "Static analysis for functionally graded piezoelectric actuators or sensors under a combined electro-thermal load", Eur. J. Mech. A/Solids, 28(2), 338-346. https://doi.org/10.1016/j.euromechsol.2008.06.007
  45. Yas, M.H., Shakeri, M. and Khanjani, M. (2011), "Layer-wise finite-element analysis of a functionally graded hollow thick cylinder with a piezoelectric ring", Proc. IMechE Part C: J. Mech. Eng. Sci., 225(5), 1045-1060. https://doi.org/10.1177/09544062JMES2521
  46. Ying, J., Lu, C.F. and Chen, W.Q. (2008), "Two-dimensional elasticity solutions or functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-19. https://doi.org/10.1016/j.compstruct.2007.07.004

피인용 문헌

  1. Modeling of Elastic Waves in a Fluid Loaded and Immersed Piezoelectric Hollow Fiber vol.3, pp.4, 2017, https://doi.org/10.1007/s40819-016-0292-2
  2. Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating vol.87, 2017, https://doi.org/10.1016/j.physe.2016.10.048
  3. Analytical solution of a two-dimensional thermoelastic problem subjected to laser pulse vol.21, pp.4, 2016, https://doi.org/10.12989/scs.2016.21.4.791
  4. Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis vol.180, 2017, https://doi.org/10.1016/j.compstruct.2017.08.015
  5. Effect of multiphysics conditions on the behavior of an exponentially graded smart cylindrical shell with imperfect bonding vol.50, pp.8, 2015, https://doi.org/10.1007/s11012-015-0150-z
  6. Magneto-thermo-elastic response of a rotating functionally graded cylinder vol.56, pp.1, 2015, https://doi.org/10.12989/sem.2015.56.1.137
  7. Thermoelastic analysis of a rotating functionally graded cylindrical shell with functionally graded sensor and actuator layers on an elastic foundation placed in a constant magnetic field vol.27, pp.4, 2016, https://doi.org/10.1177/1045389X15573342
  8. A DPL model of photo-thermal interaction in an infinite semiconductor material containing a spherical hole vol.133, pp.1, 2018, https://doi.org/10.1140/epjp/i2018-11814-6
  9. Effects of electrodes and electrical connections of piezoelectric layers on dynamic characteristics of radially polarized multilayer piezoelectric cylindrical transducers pp.1530-8138, 2019, https://doi.org/10.1177/1045389X18803454
  10. Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers vol.23, pp.3, 2015, https://doi.org/10.12989/sss.2019.23.3.215
  11. Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model vol.26, pp.2, 2020, https://doi.org/10.12989/sss.2020.26.2.253