References
- Bagnold, R.A. (1954), "Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear", Proc. R. Soc. London, Ser. A., 225(1160), 49-63. https://doi.org/10.1098/rspa.1954.0186
- Camassa, R. and Holm, D.D. (1993), "An integrable shallow water equation with peaked solitons", Phys. Rev. Lett., 71(11), 1661. https://doi.org/10.1103/PhysRevLett.71.1661
- Chen, H. and Lee, C.F. (2003), "A dynamic model for rainfall-induced landslides on natural slopes", Geomorphology, 51(4), 269-288. https://doi.org/10.1016/S0169-555X(02)00224-6
- Chen, G.Q., Li, T.B. and He, Y.H. (2012), "Formation mechanism of groundwater for the land subsidence", Res. J. Chem. Environ., 16(s2), 56-62.
- Chen, G.Q., Huang, R.Q., Xu, Q., Li, T.B. and Zhu, M.L. (2013a), "Progressive modelling of the gravity-induced landslide using the local dynamic strength reduction method", J. Mt. Sci-Engl., 10(4), 532-540. https://doi.org/10.1007/s11629-013-2367-4
- Chen, G.Q., Li, T.B., Gao, M.B., Chen, Z.Q. and Xiang, T.B. (2013b), "Deformation warning and dynamic control of dangerous disaster for large underground caverns", Disaster Adv., 6(s1), 422-430.
- Delinger, R.P. and Iverson, R.M. (2001), "Flow of variably fluidized granular masses across threedimensional terrain: 2. Numerical predictions and experimental tests", J. Geophys. Res., 106(B1), 553-566. https://doi.org/10.1029/2000JB900330
- Domnik, B. and Pudasaini, S.P. (2012), "Full two-dimensional rapid chute flows of simple viscoplastic granular materials with a pressure-dependent dynamic slip-velocity and their numerical simulations", J. Non-Newtonian Fluid Mech., 173-174, 72-86. https://doi.org/10.1016/j.jnnfm.2012.03.001
- Domnik, B., Pudasaini, S.P., Katzenbach, R. and Miller, S.A. (2013), "Coupling of full two-dimensional and depth-averaged models for granular flows", J. Non-Newtonian Fluid Mech., 201, 56-68. https://doi.org/10.1016/j.jnnfm.2013.07.005
- Fei, M., Sun, Q., Zhong, D. and Zhou, G.G. (2012), "Simulations of granular flow along an inclined plane using the Savage-Hutter model", Particuology, 10(2), 236-241. https://doi.org/10.1016/j.partic.2011.11.007
- Fernandez-Nieto, E.D., Bouchut, F., Bresch, D., Castro Diaz, M.J. and Mangeney, A. (2008), "A new Savage-Hutter type model for submarine avalanches and generated tsunami", J. Comput. Phys., 227(16), 7720-7754. https://doi.org/10.1016/j.jcp.2008.04.039
- Fischer, J.T., Kowalski, J. and Pudasaini, S.P. (2012), "Topographic curvature effects in applied avalanche modeling", Cold Reg. Sci. Technol., 74, 21-30.
- Gray, J.M.N.T., Wieland, M. and Hutter, K. (1999), "Gravity-driven free surface flow of granular avalanches over complex basal topography", Proc. R. Soc. London, Ser. A., 455(1985), 1841-1874. https://doi.org/10.1098/rspa.1999.0383
- Hungr, O. (2008), "Simplified models of spreading flow of dry granular material", Can. Geotech. J., 45(8), 1156-1168. https://doi.org/10.1139/T08-059
- Hungr, O. and Evans, S.G. (1996), "Rock avalanche runout prediction using a dynamic model", Proceedings of the 7th International Symposium on Landslides, Trondheim, Norway, June.
- Hungr, O. and McDougall, S. (2009), "Two numerical models for landslide dynamic analysis", Comput. Geosci., 35(5), 978-992. https://doi.org/10.1016/j.cageo.2007.12.003
- Hutter, K. and Schneider, L. (2010), "Important aspects in the formulation of solid-fluid debris-flow models. Part II. Constitutive modelling", Continuum Mech. Thermodyn., 22(5), 391-411. https://doi.org/10.1007/s00161-010-0154-9
- Hutter, K., Savage, S.B. and Nohguchi, Y. (1989), "Numerical, analytical, and laboratory experimental studies of granular avalanche flows", Ann. Glaciol., 13, 109-116. https://doi.org/10.1017/S0260305500007722
- Hutter, K., Koch, T., Pluuss, C. and Savage, S.B. (1995), "The dynamics of avalanches of granular materials from initiation to runout. Part II. Experiments", Acta Mech., 109(1-4), 127-165. https://doi.org/10.1007/BF01176820
- Iverson, R.M. (1997), "The physics of debris flows", Rev. Geophys., 35(3), 245-296. https://doi.org/10.1029/97RG00426
- Iverson, R.M. and Denlinger, R.P. (2001), "Flow of variably fluidized granular masses across threedimensional terrain: 1. Coulomb mixture theory", J. Geophys. Res., 106(B1), 537-552. DOI: 10.1029/2000JB900329
- Johnson, C.G. and Gray, J.M.N.T. (2011), "Granular jets and hydraulic jumps on an inclined plane", J. Fluid Mech., 675, 87-116. https://doi.org/10.1017/jfm.2011.2
- Li, X., He, S., Luo, Y. and Wu, Y. (2012), "Simulation of the sliding process of Donghekou landslide triggered by the Wenchuan earthquake using a distinct element method", Environ. Earth Sci., 65(4), 1049-1054. https://doi.org/10.1007/s12665-011-0953-8
- McClung, D.M. and Mears, A.I. (1995), "Dry-flowing avalanche run-up and run-out", J. Glaciol., 41(138), 359-372. https://doi.org/10.1017/S0022143000016233
- Ouyang, C., He, S., Xu, Q., Luo, Y. and Zhang, W. (2013), "A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain", Comput. Geosci., 52, 1-10. https://doi.org/10.1016/j.cageo.2012.08.024
- Pirulli, M., Bristeau, M.O., Mangeney, A. and Scavia, C. (2007), "The effect of the earth pressure coefficients on the runout of granular material", Environ. Modell. Softw., 22(10), 1437-1454. https://doi.org/10.1016/j.envsoft.2006.06.006
- Pitman, E.B. and Le, L. (2005), "A two-fluid model for avalanche and debris flows", Phil. Trans. R. Soc. A, 363(1832), 1573-1601. https://doi.org/10.1098/rsta.2005.1596
- Pitman, E.B., Nichita, C.C., Patra, A., Bauer, A., Sheridan, M. and Bursik, M. (2003), "Computing granular avalanches and landslides", Phys. Fluids, 15(12), 3638-3646. https://doi.org/10.1063/1.1614253
- Pouliquen, O. (1999a), "On the shape of granular fronts down rough inclined planes", Phys. Fluids, 11(7), 1956-1958. https://doi.org/10.1063/1.870057
- Pouliquen, O. (1999b), "Scaling laws in granular flows down rough inclined planes", Phys. Fluids, 11(3), 542-548. https://doi.org/10.1063/1.869928
- Pouliquen, O. and Forterre, Y. (2002), "Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane", J. Fluid Mech., 453, 133-151.
- Pudasaini, S.P. (2012), "A general two-phase debris flow model", J. Geophys. Res., 117(F3). DOI: 10.1029/2011JF002186
- Pudasaini, S.P. (2014), "Dynamics of submarine debris flow and tsunami", Acta Mech., 225(8), 2423-2434. https://doi.org/10.1007/s00707-014-1126-0
- Pudasaini, S.P. and Domnik, B. (2009), "Energy considerations in accelerating rapid shear granular flows", Nonlinear Proc. Geoph., 16(3), 399-407. https://doi.org/10.5194/npg-16-399-2009
- Pudasaini, S.P. and Hutter, K. (2007), Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanches, Springer, New York, NY, USA.
- Pudasaini, S.P. and Krautblatter, M. (2014), "A two-phase mechanical model for rock-ice avalanches", J. Geophys. Res. Earth Surf., 119(10), 2272-2290. https://doi.org/10.1002/2014JF003183
- Pudasaini, S.P. and Kroner, C. (2008), "Shock waves in rapid flows of dense granular materials: Theoretical predictions and experimental results", Phys. Rev. E, 78(4), 041308. https://doi.org/10.1103/PhysRevE.78.041308
- Pudasaini, S.P., Wang, Y. and Hutter, K. (2005a), "Modelling debris flows down general channels", Nat. Hazard. Earth. Sys., 5(6), 799-819. https://doi.org/10.5194/nhess-5-799-2005
- Pudasaini, S.P., Hsiau, S.S., Wang, Y. and Hutter, K. (2005b), "Velocity measurements in dry granular avalanches using particle image velocimetry technique and comparison with theoretical predictions", Phys. Fluids, 17(9), 093301. https://doi.org/10.1063/1.2007487
- Salm, B. (1993), "Flow transition and runout distances of flowing avalanches", Ann. Glaciol., 18, 221-226. https://doi.org/10.1017/S0260305500011551
- Savage, S.B. and Hutter, K. (1989), "The motion of a finite mass of granular material down a rough incline", J. Fluid Mech., 199, 177-215. https://doi.org/10.1017/S0022112089000340
- Savage, S.B. and Hutter, K. (1991), "The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis", Acta Mech., 86(1-4), 201-223. https://doi.org/10.1007/BF01175958
- Tai, Y.C., and Kuo, C.Y. (2008), "A new model of granular flows over general topography with erosion and deposition", Acta Mech., 199(1-4), 71-96. https://doi.org/10.1007/s00707-007-0560-7
- Tai, Y.C., Noelle, S., Gray, J.M.N.T. and Hutter, K. (2002), "Shock-capturing and front-tracking methods for granular avalanches", J. Comput. Phys., 175(1), 269-301. https://doi.org/10.1006/jcph.2001.6946
- Teufelsbauer, H., Wang, Y., Pudasaini, S.P., Borja, R.I. and Wu, W. (2011), "DEM simulation of impact force exerted by granular flow on rigid structures", Acta Geotech., 6(3), 119-133. https://doi.org/10.1007/s11440-011-0140-9
- Thornton, A.R. (2005), "A study of segregation in granular gravity driven free surface flows", Ph.D. Dissertation; The University of Manchester, Manchester, England.
- Toro, E.F. (2001), Shock-capturing Methods for Free-surface Shallow Flows, John Wiley and Sons, NJ, USA.
- Toth, G. and Odstrcil, D. (1996), "Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magneto hydrodynamic problems", J. Comput. Phys., 128(1), 82-100. https://doi.org/10.1006/jcph.1996.0197
- Wang, X., Morgenstern, N.R. and Chan, D.H. (2010), "A model for geotechnical analysis of flow slides and debris flows", Can. Geotech. J., 47(12), 1401-1414. https://doi.org/10.1139/T10-039
- Yee, H. (1989), "A class of high resolution explicit and implicit shock capturing methods", NASA TM-101088.
Cited by
- A non-hydrostatic model for the numerical study of landslide-generated waves 2017, https://doi.org/10.1007/s10346-017-0891-y