참고문헌
- Abd-Elaal, E.S., Mills, J.E. and Ma, X. (2014), "Empirical models for predicting unsteady-state downburst wind speeds", J. Wind Eng. Ind. Aerod., 129, 49-63. https://doi.org/10.1016/j.jweia.2014.03.011
- Burlando, M., Carassale, L., Georgieva, E., Ratto, C.F. and Solari, G. (2007), "A simple and efficient procedure for the numerical simulation of wind fields in complex terrain", Bound. Lay. Meteorol., 125(3), 417-439. https://doi.org/10.1007/s10546-007-9196-3
- Burlando, M., Freda, A., Ratto, C.F. and Solari, G. (2010), "A pilot study of the wind speed along the Rome-Naples HS/HC railway line. Part 1-Numerical modelling and wind simulations", J. Wind Eng. Ind. Aerod., 98, 392-403. https://doi.org/10.1016/j.jweia.2009.12.006
- Burlando, M., De Gaetano, P., Pizzo, M., Repetto, M.P., Solari, G. and Tizzi, M. (2013), "Wind climate analysis in complex terrain", J. Wind Eng. Ind. Aerod., 123, 349-362. https://doi.org/10.1016/j.jweia.2013.09.016
- Burlando, M., Pizzo, M., Repetto, M.P., Solari, G., De Gaetano and P., Tizzi, M. (2014), "Short-term wind forecasting for the safety management of complex areas during hazardous wind events", J. Wind Eng. Ind. Aerod., 135, 170-181. https://doi.org/10.1016/j.jweia.2014.07.006
- Burlando, M., De Gaetano, P., Pizzo, M., Repetto, M.P., Solari, G. and Tizzi, M. (2015), "The European project 'Wind, Port and Seas'", Proceedings of the 14th International Conference on Wind Engineering, Porto Alegre, Brasil.
- Castino, F., Rusca, L. and Solari, G. (2003), "Wind climate micro-zoning: A pilot application to Liguria Region (North-Western Italy)", J. Wind Eng. Ind. Aerod., 91, 1353-1375. https://doi.org/10.1016/j.jweia.2003.08.004
- Chay, M.T., Albermani, F. and Wilson, B. (2006), "Numerical and analytical simulation of downburst wind loads", Eng. Struct., 28(2), 240-254. https://doi.org/10.1016/j.engstruct.2005.07.007
- Chay, M.T., Wilson, R. and Albermani, F (2008), "Gust occurrence in simulated non-stationary winds", J. Wind Eng. Ind. Aerod., 96(10-11), 2161-2172. https://doi.org/10.1016/j.jweia.2008.02.059
- Chen, L. and Letchford, C.W. (2004), "A deterministic-stochastic hybrid model of downbursts and its impact on a cantilevered structure", Eng. Struct., 26(5), 619-629. https://doi.org/10.1016/j.engstruct.2003.12.009
- Chen, L. and Letchford, C.W. (2005), "Proper orthogonal decomposition of two vertical profiles of full-scale nonstationary correlated downburst wind speeds", J. Wind Eng. Ind. Aerod., 93(3), 187-266. https://doi.org/10.1016/j.jweia.2004.11.004
- Chen, L. and Letchford, C.W. (2006), "Multi-scale correlation analyses of two lateral profiles of full-scale downburst wind speeds", J. Wind Eng. Ind. Aerod., 94, 675-696. https://doi.org/10.1016/j.jweia.2006.01.021
- Chen, L. and Letchford, C.W. (2007), "Numerical simulation of extreme winds from thunderstorm downbursts", J. Wind Eng. Ind. Aerod., 95, 977-990. https://doi.org/10.1016/j.jweia.2007.01.021
- Choi, E.C.C. (2000), "Wind characteristics of tropical thunderstorms", J. Wind Eng. Ind. Aerod., 84, 215-226. https://doi.org/10.1016/S0167-6105(99)00054-9
- Choi, E.C.C. (2004), "Field measurement and experimental study of wind speed during thunderstorms", J. Wind Eng. Ind. Aerod., 92, 275-290. https://doi.org/10.1016/j.jweia.2003.12.001
- Choi, E.C.C. and Hidayat, F.A. (2002a), "Gust factors for thunderstorm and non-thunderstorm winds", J. Wind Eng. Ind. Aerod., 90, 1683-1696. https://doi.org/10.1016/S0167-6105(02)00279-9
- Choi, E.C.C. and Hidayat, F.A. (2002b), "Dynamic response of structures to thunderstorm winds", Prog. Struct. Eng. Mat., 4(4), 408-416. https://doi.org/10.1002/pse.132
- De Gaetano, P., Repetto, M.P., Repetto, T. and Solari, G. (2013), "Separation and classification of extreme wind events from anemometric data", J. Wind Eng. Ind. Aerod., 126, 132-143.
- Duranona, V., Sterling, M. and Baker, C.J. (2006), "An analysis of extreme non-synoptic winds", J. Wind Eng. Ind. Aerod., 95, 1007-1027.
- Engineering Sciences Data Unit (1993), Computer program for wind speeds and turbulence properties: flat or hill sites in terrain with roughness changes, ESDU Item 92032, London, U.K.
- Fujita, T.T. (1990), "Downburst: meteorological features and wind field characteristics", J. Wind Eng. Ind. Aerod., 36, 75-86. https://doi.org/10.1016/0167-6105(90)90294-M
- Geerts, B. (2001), "Estimating downburst-related maximum surface wind speeds by means of proximity soundings in New South Wales, Australia", Weather Forecast, 16(2), 261-269. https://doi.org/10.1175/1520-0434(2001)016<0261:EDRMSW>2.0.CO;2
- Gunter, W.S. and Schroeder, J.L. (2013), "High-resolution full-scale measurements of thunderstorm outflow winds", Proceedings of the 12th Americas Conference on Wind Engineering, Seattle, Washington.
- Holmes, J.D. and Oliver, S.E. (2000), "An empirical model of a downburst", Eng. Struct., 22(9), 1167-1172. https://doi.org/10.1016/S0141-0296(99)00058-9
- Holmes, J.D., Hangan, H.M., Schroeder, J.L., Letchford, C.W. and Orwig, K.D. (2008), "A forensic study of the Lubbock-Reese downdraft of 2002", Wind Struct., 11(2), 19-39. https://doi.org/10.12989/was.2008.11.1.019
- Kasperski, M. (2002), "A new wind zone map of Germany", J. Wind Eng. Ind. Aerod., 90, 1271-1287. https://doi.org/10.1016/S0167-6105(02)00257-X
- Kim, J. and Hangan, H. (2007), "Numerical simulations of impinging jets with application to downbursts", J. Wind Eng. Ind. Aerod., 95(4), 279-298. https://doi.org/10.1016/j.jweia.2006.07.002
- Kwon, D.K. and Kareem, A. (2009), "Gust-front factor: New framework for wind load effects on structures", J. Struct. Eng.-ASCE, 135(6), 717-732. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:6(717)
- Lombardo, F.T., Smith, D.A., Schroeder, J.L. and Mehta, K.C. (2014), "Thunderstorm characteristics of importance to wind engineering", J. Wind Eng. Ind. Aerod., 125, 121-132. https://doi.org/10.1016/j.jweia.2013.12.004
- Mason, M.S., Wood, G.S. and Fletcher, D.F. (2009), "Numerical simulation of downburst winds", J. Wind Eng. Ind. Aerod., 97, 523-539. https://doi.org/10.1016/j.jweia.2009.07.010
- McCullough, M., Kwon, D.K., Kareem, A. and Wang, L. (2014), "Efficacy of averaging interval for nonstationary winds", J. Eng. Mech.-ASCE, 140(1), 1-19. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000641
- Olesen, H.R., Larsen, S.E. and Hojstrup, J. (1984), "Modelling velocity spectra in the lower part of the planetary boundary layer", Bound.-Lay. Meteorol., 29(3), 285-312. https://doi.org/10.1007/BF00119794
- Orf, L., Kantor, E. and Savory, E. (2012), "Simulation of a downburst-producing thunderstorm using a very high-resolution three-dimensional cloud model", J. Wind Eng. Ind. Aerod., 104-106, 547-557. https://doi.org/10.1016/j.jweia.2012.02.020
- Orwig, K.D. and Schroeder, J.L. (2007), "Near-surface wind characteristics of extreme thunderstorm outflows", J. Wind Eng. Ind. Aerod., 95, 565-584. https://doi.org/10.1016/j.jweia.2006.12.002
- Riera, J.D. and Ponte, J. Jr. (2012), "Recent Brazilian research on thunderstorm winds and their effects on structural design", Wind Struct., 15(2), 111-129. https://doi.org/10.12989/was.2012.15.2.111
- Solari, G. (1987), "Turbulence modeling for gust loading", J. Struct. Eng.-ASCE, 113(7), 1550-1569. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:7(1550)
- Solari, G. (1993), "Gust buffeting. I: peak wind velocity and equivalent pressure", J. Struct. Eng.-ASCE, 119(2), 365-382. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:2(365)
- Solari, G. (2014), "Emerging issues and new scenarios for wind loading on structures in mixed climates", Wind Struct., 19(3), 295-320. https://doi.org/10.12989/was.2014.19.3.295
- Solari, G., De Gaetano, P. and Repetto, M.P. (2015), "Thunderstorm response spectrum: fundamentals and case study", J. Wind Eng. Ind. Aerod., 143, 62-77. https://doi.org/10.1016/j.jweia.2015.04.009
- Solari, G. and Piccardo, G. (2001), "Probabilistic 3-D turbulence modeling for gust buffeting of structures", Prob. Eng. Mech., 16(1), 73-86. https://doi.org/10.1016/S0266-8920(00)00010-2
- Solari, G., Repetto, M.P., Burlando, M., De Gaetano, P., Pizzo, M., Tizzi, M. and Parodi, M. (2012), "The wind forecast for safety and management of port areas", J. Wind Eng. Ind. Aerod., 104-106, 266-277. https://doi.org/10.1016/j.jweia.2012.03.029
- Solari, G. and Tubino, F. (2002), "A turbulence model based on principal components", Prob. Eng. Mech., 17(4), 327-335. https://doi.org/10.1016/S0266-8920(02)00016-4
- Vermeire, B.C., Orf, L.G. and Savory, E. (2011), "Improved modeling of downburst outflows for wind engineering applications using a cooling source approach", J. Wind Eng. Ind. Aerod., 99, 801-814. https://doi.org/10.1016/j.jweia.2011.03.003
- Wood, G.S., Kwok, K.C.S., Motteram, N.A. and Fletcher, D.F. (2001), "Physical and numerical modelling of thunderstorm downburst", J. Wind Eng. Ind. Aerod., 89, 535-552. https://doi.org/10.1016/S0167-6105(00)00090-8
- Xu, Z. and Hangan, H. (2008), "Scale, boundary and inlet condition effects on impinging jets", J. Wind Eng. Ind. Aerod., 96, 2383-2402. https://doi.org/10.1016/j.jweia.2008.04.002
피인용 문헌
- Review on dynamic and quasi-static buffeting response of transmission lines under synoptic and non-synoptic winds vol.112, 2016, https://doi.org/10.1016/j.engstruct.2016.01.003
- Aero-elastic testing of multi-spanned transmission line subjected to downbursts vol.169, 2017, https://doi.org/10.1016/j.jweia.2017.07.010
- Analysis of buffeting response of hinged overhead transmission conductor to nonstationary winds vol.147, 2017, https://doi.org/10.1016/j.engstruct.2017.06.009
- Some critical issues on the distribution of the maximum value of the wind-excited response of structures 2017, https://doi.org/10.1016/j.probengmech.2017.07.003
- Field Data Analysis and Weather Scenario of a Downburst Event in Livorno, Italy, on 1 October 2012 vol.145, pp.9, 2017, https://doi.org/10.1175/MWR-D-17-0018.1
- Thunderstorm response spectrum: Fundamentals and case study vol.143, 2015, https://doi.org/10.1016/j.jweia.2015.04.009
- Hybrid simulation of thunderstorm outflows and wind-excited response of structures vol.52, pp.13, 2017, https://doi.org/10.1007/s11012-017-0718-x
- A refined analysis of thunderstorm outflow characteristics relevant to the wind loading of structures 2017, https://doi.org/10.1016/j.probengmech.2017.06.003
- Longitudinal force on transmission towers due to non-symmetric downburst conductor loads vol.127, 2016, https://doi.org/10.1016/j.engstruct.2016.08.030
- Thunderstorm response spectrum technique: Theory and applications vol.108, 2016, https://doi.org/10.1016/j.engstruct.2015.11.012
- Integrated tools for improving the resilience of seaports under extreme wind events vol.32, 2017, https://doi.org/10.1016/j.scs.2017.03.022
- Near-ground turbulence of the Bora wind in summertime vol.147, 2015, https://doi.org/10.1016/j.jweia.2015.09.013
- Critical load cases for lattice transmission line structures subjected to downbursts: Economic implications for design of transmission lines vol.159, 2018, https://doi.org/10.1016/j.engstruct.2017.12.043
- A web-based GIS platform for the safe management and risk assessment of complex structural and infrastructural systems exposed to wind vol.117, 2018, https://doi.org/10.1016/j.advengsoft.2017.03.002
- Statistical characteristics of convective wind gusts in Germany vol.17, pp.6, 2017, https://doi.org/10.5194/nhess-17-957-2017
- Monitoring, cataloguing, and weather scenarios of thunderstorm outflows in the northern Mediterranean vol.18, pp.9, 2018, https://doi.org/10.5194/nhess-18-2309-2018
- Evolutionary Spectra-Based Time-Varying Coherence Function and Application in Structural Response Analysis to Downburst Winds vol.144, pp.7, 2018, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002066
- Property of a Typical Urban Thunderstorm Outflow Relevant to Wind Load on Structures vol.218, pp.1755-1315, 2019, https://doi.org/10.1088/1755-1315/218/1/012086
- Bora wind characteristics for engineering applications vol.24, pp.6, 2015, https://doi.org/10.12989/was.2017.24.6.579
- Characteristics of downslope winds in the Liguria Region vol.24, pp.6, 2015, https://doi.org/10.12989/was.2017.24.6.613
- Review of downslope windstorms in Japan vol.24, pp.6, 2017, https://doi.org/10.12989/was.2017.24.6.637
- Wind characteristics at Sutong Bridge site using 8-year field measurement data vol.25, pp.2, 2015, https://doi.org/10.12989/was.2017.25.2.195
- Extreme wind speed distribution in a mixed wind climate vol.176, pp.None, 2015, https://doi.org/10.1016/j.jweia.2018.03.019
- Aero-elastic response of transmission line system subjected to downburst wind: Validation of numerical model using experimental data vol.27, pp.2, 2015, https://doi.org/10.12989/was.2018.27.2.071
- Aerodynamic loading of a typical low-rise building for an experimental stationary and non-Gaussian impinging jet vol.28, pp.5, 2015, https://doi.org/10.12989/was.2019.28.5.315
- Directional response of structures to thunderstorm outflows vol.54, pp.9, 2015, https://doi.org/10.1007/s11012-019-00986-5
- Fast Convolution Integration-Based Nonstationary Response Analysis of Linear and Nonlinear Structures with Nonproportional Damping vol.145, pp.8, 2015, https://doi.org/10.1061/(asce)em.1943-7889.0001633
- Quantitative Assessment of Nonstationarity of Wind Speed Signal Using Recurrence Plot vol.32, pp.6, 2015, https://doi.org/10.1061/(asce)as.1943-5525.0001092
- A novel approach to scaling experimentally produced downburst-like impinging jet outflows vol.196, pp.None, 2015, https://doi.org/10.1016/j.jweia.2019.104025
- Thunderstorm Downbursts and Wind Loading of Structures: Progress and Prospect vol.6, pp.None, 2020, https://doi.org/10.3389/fbuil.2020.00063
- Life-Cycle Cost Analysis of a Point-Like Structure Subjected to Tornadic Wind Loads vol.146, pp.2, 2015, https://doi.org/10.1061/(asce)st.1943-541x.0002480
- Characteristics of Wind Structure and Nowcasting of Gust Associated with Subtropical Squall Lines over Hong Kong and Shenzhen, China vol.11, pp.3, 2020, https://doi.org/10.3390/atmos11030270
- Numerical characterization of downburst wind field at WindEEE dome vol.30, pp.3, 2015, https://doi.org/10.12989/was.2020.30.3.231
- A comparative study of the wind characteristics of three typhoons based on stationary and nonstationary models vol.101, pp.3, 2015, https://doi.org/10.1007/s11069-020-03894-0
- Experimental investigation on non-stationary wind loading effects generated with a multi-blade flow device vol.96, pp.None, 2015, https://doi.org/10.1016/j.jfluidstructs.2020.103049
- Time-Varying Multiscale Spatial Correlation: Simulation and Application to Wind Loading of Structures vol.146, pp.7, 2015, https://doi.org/10.1061/(asce)st.1943-541x.0002689
- Characterizing Thunderstorm Gust Fronts near Complex Terrain vol.148, pp.8, 2015, https://doi.org/10.1175/mwr-d-19-0316.1
- Towards performance-based design under thunderstorm winds: a new method for wind speed evaluation using historical records and Monte Carlo simulations vol.31, pp.2, 2020, https://doi.org/10.12989/was.2020.31.2.085
- Investigation of the Transient Nature of Thunderstorm Winds from Europe, the United States, and Australia Using a New Method for Detection of Changepoints in Wind Speed Records vol.148, pp.9, 2020, https://doi.org/10.1175/mwr-d-19-0312.1
- Non-stationary dynamic structural response to thunderstorm outflows vol.62, pp.None, 2015, https://doi.org/10.1016/j.probengmech.2020.103103
- A Refined Study of Atmospheric Wind Properties in the Beijing Urban Area Based on a 325 m Meteorological Tower vol.12, pp.6, 2015, https://doi.org/10.3390/atmos12060786
- Generating unconventional wind flow in an actively controlled multi-fan wind tunnel vol.33, pp.2, 2015, https://doi.org/10.12989/was.2021.33.2.115
- Damage to transmission towers under thunderstorm winds vol.4, pp.2, 2015, https://doi.org/10.1002/cepa.1294
- Modal properties of a vertical axis wind turbine in operating and parked conditions vol.242, pp.None, 2021, https://doi.org/10.1016/j.engstruct.2021.112587
- Numerical investigation of flow around a square cylinder in accelerated flow vol.33, pp.10, 2021, https://doi.org/10.1063/5.0062282
- Characteristics and Vertical Profiles of Mean Wind and Turbulence for Typhoon, Monsoon, and Thunderstorm Winds vol.147, pp.11, 2015, https://doi.org/10.1061/(asce)st.1943-541x.0003156
- Parametric study of the quasi-static response of wind turbines in downburst conditions using a numerical model vol.250, pp.None, 2015, https://doi.org/10.1016/j.engstruct.2021.113440
- Practical Approach to Digitally Simulate Nonsynoptic Wind Velocity Profiles and Its Implications on the Response of Monopole Towers vol.148, pp.1, 2015, https://doi.org/10.1061/(asce)st.1943-541x.0003228