DOI QR코드

DOI QR Code

Abnormal Astrocytosis in the Basal Ganglia Pathway of Git1-/- Mice

  • Lim, Soo-Yeon (Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University) ;
  • Mah, Won (Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University)
  • 투고 : 2015.02.12
  • 심사 : 2015.03.02
  • 발행 : 2015.06.30

초록

Attention deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, affecting approximately 5% of children. However, the neural mechanisms underlying its development and treatment are yet to be elucidated. In this study, we report that an ADHD mouse model, which harbors a deletion in the Git1 locus, exhibits severe astrocytosis in the globus pallidus (GP) and thalamic reticular nucleus (TRN), which send modulatory GABAergic inputs to the thalamus. A moderate level of astrocytosis was displayed in other regions of the basal ganglia pathway, including the ventrobasal thalamus and cortex, but not in other brain regions, such as the caudate putamen, basolateral amygdala, and hippocampal CA1. This basal ganglia circuit-selective astrocytosis was detected in both in adult (2-3 months old) and juvenile (4 weeks old) $Git1^{\check{s}/\check{s}}$ mice, suggesting a developmental origin. Astrocytes play an active role in the developing synaptic circuit; therefore, we performed an immunohistochemical analysis of synaptic markers. We detected increased and decreased levels of GABA and parvalbumin (PV), respectively, in the GP. This suggests that astrocytosis may alter synaptic transmission in the basal ganglia. Intriguingly, increased GABA expression colocalized with the astrocyte marker, GFAP, indicative of an astrocytic origin. Collectively, these results suggest that defects in basal ganglia circuitry, leading to impaired inhibitory modulation of the thalamus, are neural correlates for the ADHD-associated behavioral manifestations in $Git1^{\check{s}/\check{s}}$ mice.

키워드

참고문헌

  1. Anaya-Martinez, V., Martinez-Marcos, A., Martinez-Fong, D., Aceves, J., and Erlij, D. (2006). Substantia nigra compacta neurons that innervate the reticular thalamic nucleus in the rat also project to striatum or globus pallidus: implications for abnormal motor behavior. Neuroscience 143, 477-486. https://doi.org/10.1016/j.neuroscience.2006.08.033
  2. Araque, A., Parpura, V., Sanzgiri, R.P., and Haydon, P.G. (1998). Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur. J. Neurosci. 10, 2129-2142. https://doi.org/10.1046/j.1460-9568.1998.00221.x
  3. Aylward, E.H., Reiss, A.L., Reader, M.J., Singer, H.S., Brown, J.E., and Denckla, M.B. (1996). Basal ganglia volumes in children with attention-deficit hyperactivity disorder. J. Child Neurol. 11, 112-115. https://doi.org/10.1177/088307389601100210
  4. Biederman, J. (2005). Attention-deficit/hyperactivity disorder: a selective overview. Biol. Psychiatry 57, 1215-1220. https://doi.org/10.1016/j.biopsych.2004.10.020
  5. Castellanos, F.X., Giedd, J.N., Marsh, W.L., Hamburger, S.D., Vaituzis, A.C., Dickstein, D.P., Sarfatti, S.E., Vauss, Y.C., Snell, J.W., Lange, N., et al. (1996). Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Arch. Gen. Psychiatry 53, 607-616. https://doi.org/10.1001/archpsyc.1996.01830070053009
  6. De Keyser, J., Mostert, J.P., and Koch, M.W. (2008). Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders. J. Neurol. Sci. 267, 3-16. https://doi.org/10.1016/j.jns.2007.08.044
  7. DeLong, M.R., and Wichmann, T. (2007). Circuits and circuit disorders of the basal ganglia. Arch. Neurol. 64, 20-24. https://doi.org/10.1001/archneur.64.1.20
  8. Dickstein, S.G., Bannon, K., Castellanos, F.X., and Milham, M.P. (2006). The neural correlates of attention deficit hyperactivity disorder: an ALE meta-analysis. J. Child Psychol. Psychiatry 47, 1051-1062. https://doi.org/10.1111/j.1469-7610.2006.01671.x
  9. Durston, S., Tottenham, N.T., Thomas, K.M., Davidson, M.C., Eigsti, I.M., Yang, Y., Ulug, A.M., and Casey, B.J. (2003). Differential patterns of striatal activation in young children with and without ADHD. Biol. Psychiatry 53, 871-878. https://doi.org/10.1016/S0006-3223(02)01904-2
  10. Eid, T., Thomas, M.J., Spencer, D.D., Runden-Pran, E., Lai, J.C., Malthankar, G.V., Kim, J.H., Danbolt, N.C., Ottersen, O.P., and de Lanerolle, N.C. (2004). Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363, 28-37. https://doi.org/10.1016/S0140-6736(03)15166-5
  11. Etienne-Manneville, S., and Hall, A. (2001). Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106, 489-498. https://doi.org/10.1016/S0092-8674(01)00471-8
  12. Foldy, C., Malenka, R.C., and Sudhof, T.C. (2013). Autismassociated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling. Neuron 78, 498-509. https://doi.org/10.1016/j.neuron.2013.02.036
  13. Fukata, M., Nakagawa, M., and Kaibuchi, K. (2003). Roles of Rhofamily GTPases in cell polarisation and directional migration. Curr. Opin. Cell Biol. 15, 590-597. https://doi.org/10.1016/S0955-0674(03)00097-8
  14. Gantois, I., Fang, K., Jiang, L., Babovic, D., Lawrence, A.J., Ferreri, V., Teper, Y., Jupp, B., Ziebell, J., Morganti-Kossmann, C.M., et al. (2007). Ablation of D1 dopamine receptor-expressing cells generates mice with seizures, dystonia, hyperactivity, and impaired oral behavior. Proc. Natl. Acad. Sci. USA 104, 4182-4187. https://doi.org/10.1073/pnas.0611625104
  15. Gerring, J., Brady, K., Chen, A., Quinn, C., Herskovits, E., Bandeen-Roche, K., Denckla, M.B., and Bryan, R.N. (2000). Neuroimaging variables related to development of Secondary Attention Deficit Hyperactivity Disorder after closed head injury in children and adolescents. Brain Injury 14, 205-218. https://doi.org/10.1080/026990500120682
  16. Graybiel, A.M. (2000). The basal ganglia. Curr. Biol. 10, R509-511. https://doi.org/10.1016/S0960-9822(00)00593-5
  17. Halassa, M.M., and Haydon, P.G. (2010). Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Ann. Rev. Physiol. 72, 335-355. https://doi.org/10.1146/annurev-physiol-021909-135843
  18. Hoefen, R.J., and Berk, B.C. (2006). The multifunctional GIT family of proteins. J. Cell Sci. 119, 1469-1475. https://doi.org/10.1242/jcs.02925
  19. Ivanov, I., Bansal, R., Hao, X., Zhu, H., Kellendonk, C., Miller, L., Sanchez-Pena, J., Miller, A.M., Chakravarty, M.M., Klahr, K., et al. (2010). Morphological abnormalities of the thalamus in youths with attention deficit hyperactivity disorder. Am. J. Psychiatry 167, 397-408. https://doi.org/10.1176/appi.ajp.2009.09030398
  20. Kam, K., and Nicoll, R. (2007). Excitatory synaptic transmission persists independently of the glutamate-glutamine cycle. J. Neurosci. 27, 9192-9200. https://doi.org/10.1523/JNEUROSCI.1198-07.2007
  21. Karlsson, R.M., Tanaka, K., Heilig, M., and Holmes, A. (2008). Loss of glial glutamate and aspartate transporter (excitatory amino acid transporter 1) causes locomotor hyperactivity and exaggerated responses to psychotomimetics: rescue by haloperidol and metabotropic glutamate 2/3 agonist. Biol. Psychiatry 64, 810-814. https://doi.org/10.1016/j.biopsych.2008.05.001
  22. Killeen, P.R., Russell, V.A., and Sergeant, J.A. (2013). A behavioral neuroenergetics theory of ADHD. Neurosci. Biobehav. Rev. 37, 625-657. https://doi.org/10.1016/j.neubiorev.2013.02.011
  23. Kim, M.H., Choi, J., Yang, J., Chung, W., Kim, J.H., Paik, S.K., Kim, K., Han, S., Won, H., Bae, Y.S., et al. (2009). Enhanced NMDA receptor-mediated synaptic transmission, enhanced long-term potentiation, and impaired learning and memory in mice lacking IRSp53. J. Neurosci. 29, 1586-1595. https://doi.org/10.1523/JNEUROSCI.4306-08.2009
  24. Kravitz, A.V., Freeze, B.S., Parker, P.R., Kay, K., Thwin, M.T., Deisseroth, K., and Kreitzer, A.C. (2010). Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622-626. https://doi.org/10.1038/nature09159
  25. Lee, S., Yoon, B.E., Berglund, K., Oh, S.J., Park, H., Shin, H.S., Augustine, G.J., and Lee, C.J. (2010). Channel-mediated tonic GABA release from glia. Science 330, 790-796. https://doi.org/10.1126/science.1184334
  26. Liang, S.L., Carlson, G.C., and Coulter, D.A. (2006). Dynamic regulation of synaptic GABA release by the glutamate-glutamine cycle in hippocampal area CA1. J. Neurosci. 26, 8537-8548. https://doi.org/10.1523/JNEUROSCI.0329-06.2006
  27. Liu, F., Jia, L., Thompson-Baine, A.M., Puglise, J.M., Ter Beest, M.B., and Zegers, M.M. (2010). Cadherins and Pak1 control contact inhibition of proliferation by Pak1-betaPIX-GIT complexdependent regulation of cell-matrix signaling. Mol. Cell. Biol. 30, 1971-1983. https://doi.org/10.1128/MCB.01247-09
  28. Mannix, R., Berglass, J., Berkner, J., Moleus, P., Qiu, J., Andrews, N., Gunner, G., Berglass, L., Jantzie, L.L., Robinson, S., et al. (2014). Chronic gliosis and behavioral deficits in mice following repetitive mild traumatic brain injury. J. Neurosurgery 121, 1342-1350. https://doi.org/10.3171/2014.7.JNS14272
  29. Ogdie, M.N., Fisher, S.E., Yang, M., Ishii, J., Francks, C., Loo, S.K., Cantor, R.M., McCracken, J.T., McGough, J.J., Smalley, S.L., et al. (2004). Attention deficit hyperactivity disorder: fine mapping supports linkage to 5p13, 6q12, 16p13, and 17p11. Am. J. Hum. Genet. 75, 661-668. https://doi.org/10.1086/424387
  30. Ortinski, P.I., Dong, J., Mungenast, A., Yue, C., Takano, H., Watson, D.J., Haydon, P.G., and Coulter, D.A. (2010). Selective induction of astrocytic gliosis generates deficits in neuronal inhibition. Nat. Neurosci. 13, 584-591. https://doi.org/10.1038/nn.2535
  31. Overmeyer, S., Bullmore, E.T., Suckling, J., Simmons, A., Williams, S.C., Santosh, P.J., and Taylor, E. (2001). Distributed grey and white matter deficits in hyperkinetic disorder: MRI evidence for anatomical abnormality in an attentional network. Psychol. Med. 31, 1425-1435.
  32. Penela, P., Nogues, L., and Mayor, F., Jr. (2014). Role of G proteincoupled receptor kinases in cell migration. Curr. Opin. Cell Biol. 27, 10-17. https://doi.org/10.1016/j.ceb.2013.10.005
  33. Premont, R.T., Claing, A., Vitale, N., Freeman, J.L., Pitcher, J.A., Patton, W.A., Moss, J., Vaughan, M., and Lefkowitz, R.J. (1998). beta2-Adrenergic receptor regulation by GIT1, a G proteincoupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proc. Natl. Acad. Sci. USA 95, 14082-14087. https://doi.org/10.1073/pnas.95.24.14082
  34. Qiu, A., Crocetti, D., Adler, M., Mahone, E.M., Denckla, M.B., Miller, M.I., and Mostofsky, S.H. (2009). Basal ganglia volume and shape in children with attention deficit hyperactivity disorder. Am. J. Psychiatry 166, 74-82. https://doi.org/10.1176/appi.ajp.2008.08030426
  35. Rothwell, P.E., Fuccillo, M.V., Maxeiner, S., Hayton, S.J., Gokce, O., Lim, B.K., Fowler, S.C., Malenka, R.C., and Sudhof, T.C. (2014). Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell 158, 198-212. https://doi.org/10.1016/j.cell.2014.04.045
  36. Russell, V.A. (2002). Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention- deficit hyperactivity disorder--the spontaneously hypertensive rat. Behav. Brain Res. 130, 191-196. https://doi.org/10.1016/S0166-4328(01)00425-9
  37. Russell, V.A., Oades, R.D., Tannock, R., Killeen, P.R., Auerbach, J.G., Johansen, E.B., and Sagvolden, T. (2006). Response variability in attention-deficit/hyperactivity disorder: a neuronal and glial energetics hypothesis. Behav. Brain Funct. 2, 30. https://doi.org/10.1186/1744-9081-2-30
  38. Sandau, U.S., Alderman, Z., Corfas, G., Ojeda, S.R., and Raber, J. (2012). Astrocyte-specific disruption of SynCAM1 signaling results in ADHD-like behavioral manifestations. PLoS One 7, e36424. https://doi.org/10.1371/journal.pone.0036424
  39. Shaywitz, B.A., Cohen, D.J., and Bowers, M.B., Jr. (1977). CSF monoamine metabolites in children with minimal brain dysfunction: evidence for alteration of brain dopamine. A preliminary report. J. Pediatrics 90, 67-71. https://doi.org/10.1016/S0022-3476(77)80766-X
  40. Sonnewald, U., Westergaard, N., and Schousboe, A. (1997). Glutamate transport and metabolism in astrocytes. Glia 21, 56-63. https://doi.org/10.1002/(SICI)1098-1136(199709)21:1<56::AID-GLIA6>3.0.CO;2-#
  41. Sontag, T.A., Tucha, O., Walitza, S., and Lange, K.W. (2010). Animal models of attention deficit/hyperactivity disorder (ADHD): a critical review. Atten. Defic. Hyperact. Disord. 2, 1-20. https://doi.org/10.1007/s12402-010-0019-x
  42. Swanson, J.M., Sergeant, J.A., Taylor, E., Sonuga-Barke, E.J., Jensen, P.S., and Cantwell, D.P. (1998). Attention-deficit hyperactivity disorder and hyperkinetic disorder. Lancet 351, 429-433. https://doi.org/10.1016/S0140-6736(97)11450-7
  43. Swanson, J.M., Kinsbourne, M., Nigg, J., Lanphear, B., Stefanatos, G.A., Volkow, N., Taylor, E., Casey, B.J., Castellanos, F.X., and Wadhwa, P.D. (2007). Etiologic subtypes of attentiondeficit/ hyperactivity disorder: brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. Neuropsychol. Rev. 17, 39-59. https://doi.org/10.1007/s11065-007-9019-9
  44. Tabuchi, K., Blundell, J., Etherton, M.R., Hammer, R.E., Liu, X., Powell, C.M., and Sudhof, T.C. (2007). A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318, 71-76. https://doi.org/10.1126/science.1146221
  45. Todd, R.D., and Botteron, K.N. (2001). Is attention-deficit/hyperactivity disorder an energy deficiency syndrome? Biol. Psychiatry 50, 151-158. https://doi.org/10.1016/S0006-3223(01)01173-8
  46. Volkow, N.D., Wang, G.J., Newcorn, J., Telang, F., Solanto, M.V., Fowler, J.S., Logan, J., Ma, Y., Schulz, K., Pradhan, K., et al. (2007). Depressed dopamine activity in caudate and preliminary evidence of limbic involvement in adults with attentiondeficit/ hyperactivity disorder. Arch. Gen. Psychiatry 64, 932-940. https://doi.org/10.1001/archpsyc.64.8.932
  47. Volterra, A., and Meldolesi, J. (2005). Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci. 6, 626-640. https://doi.org/10.1038/nrn1722
  48. Won, H., Mah, W., Kim, E., Kim, J.W., Hahm, E.K., Kim, M.H., Cho, S., Kim, J., Jang, H., Cho, S.C., et al. (2011). GIT1 is associated with ADHD in humans and ADHD-like behaviors in mice. Nat. Med. 17, 566-572. https://doi.org/10.1038/nm.2330
  49. Yoon, S., Han, E., Choi, Y.C., Kee, H., Jeong, Y., Yoon, J., and Baek, K. (2014). Inhibition of cell proliferation and migration by miR- 509-3p that targets CDK2, Rac1, and PIK3C2A. Mol. Cells 37, 314-321. https://doi.org/10.14348/molcells.2014.2360

피인용 문헌

  1. Decreased Glial GABA and Tonic Inhibition in Cerebellum of Mouse Model for Attention-Deficit/Hyperactivity Disorder (ADHD) vol.26, pp.4, 2017, https://doi.org/10.5607/en.2017.26.4.206
  2. ADHD (주의력결핍 과잉행동장애) 생쥐 모델에서의 별아교세포 유래 신경전달물질 분석 vol.28, pp.5, 2015, https://doi.org/10.5352/jls.2018.28.5.597
  3. The role of ADHD associated genes in neurodevelopment vol.438, pp.2, 2015, https://doi.org/10.1016/j.ydbio.2018.03.023
  4. Microcephaly with altered cortical layering in GIT1 deficiency revealed by quantitative neuroimaging vol.76, pp.None, 2021, https://doi.org/10.1016/j.mri.2020.09.023