DOI QR코드

DOI QR Code

Suppression of ASKβ(AtSK32), a Clade III Arabidopsis GSK3, Leads to the Pollen Defect during Late Pollen Development

  • Dong, Xiangshu (Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University) ;
  • Nou, Ill-Sup (Department of Horticulture, Sunchon National University) ;
  • Yi, Hankuil (Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University) ;
  • Hur, Yoonkang (Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University)
  • 투고 : 2014.11.18
  • 심사 : 2015.02.23
  • 발행 : 2015.06.30

초록

Arabidopsis Shaggy-like protein kinases (ASKs) are Arabidopsis thaliana homologs of glycogen synthase kinase 3/SHAGGY-like kinases (GSK3/SGG), which are comprised of 10 genes with diverse functions. To dissect the function of $ASK{\beta}$ (AtSK32), $ASK{\beta}$ antisense transgenic plants were generated, revealing the effects of $ASK{\beta}$ down-regulation in Arabidopsis. Suppression of $ASK{\beta}$ expression specifically interfered with pollen development and fertility without altering the plants' vegetative phenotypes, which differed from the phenotypes reported for Arabidopsis plants defective in other ASK members. The strength of these phenotypes showed an inverse correlation with the expression levels of $ASK{\beta}$ and its co-expressed genes. In the aborted pollen of $ASK{\beta}$ antisense plants, loss of nuclei and shrunken cytoplasm began to appear at the bicellular stage of microgametogenesis. The in silico analysis of promoter and the expression characteristics implicate $ASK{\beta}$ is associated with the expression of genes known to be involved in sperm cell differentiation. We speculate that $ASK{\beta}$ indirectly affects the transcription of its co-expressed genes through the phosphorylation of its target proteins during late pollen development.

키워드

참고문헌

  1. Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi- Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63-78. https://doi.org/10.1105/tpc.006130
  2. Adamczyk, B.J., and Fernandez, D.E. (2009). MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol. 149, 1713-1723. https://doi.org/10.1104/pp.109.135806
  3. Backues, S.K., Korasick, D.A., Heese, A., and Bednarek, S.Y. (2010). The Arabidopsis dynamin-related protein2 family is essential for gametophyte development. Plant Cell 22, 3218- 3231. https://doi.org/10.1105/tpc.110.077727
  4. Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li, W.W., and Noble, W.S. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202-208. https://doi.org/10.1093/nar/gkp335
  5. Bate, N., and Twell, D. (1998). Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol. Biol. 37, 859-869. https://doi.org/10.1023/A:1006095023050
  6. Boavida, L.C., Shuai, B., Yu, H.J., Pagnussat, G.C., Sundaresan, V., and McCormick, S. (2009). A collection of Ds insertional mutants associated with defects in male gametophyte development and function in Arabidopsis thaliana. Genetics 181, 1369-1385. https://doi.org/10.1534/genetics.108.090852
  7. Borg, M., Brownfield, L., Khatab, H., Sidorova, A., Lingaya, M., and Twell, D. (2011). The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. Plant Cell 23, 534-549. https://doi.org/10.1105/tpc.110.081059
  8. Borg, M., Rutley, N., Kagale, S., Hamamura, Y., Gherghinoiu, M., Kumar, S., Sari, U., Esparza-Franco, M.A., Sakamoto, W., Rozwadowski, K., et al. (2014). An EAR-dependent regulatory module promotes male germ cell division and sperm fertility in Arabidopsis. Plant Cell 26, 2098-2113. https://doi.org/10.1105/tpc.114.124743
  9. Cai, Z., Liu, J., Wang, H., Yang, C., Chen, Y., Li, Y., Pan, S., Dong, R., Tang, G., Barajas-Lopez Jde, D., et al. (2014). GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating clade III SnRK2s in Arabidopsis. Proc. Natl. Acad. Sci. USA 111, 9651-9656. https://doi.org/10.1073/pnas.1316717111
  10. Charrier, B., Champion, A., Henry, Y., and Kreis, M. (2002). Expression profiling of the whole Arabidopsis shaggy-like kinase multigene family by real-time reverse transcriptase-polymerase chain reaction. Plant Physiol. 130, 577-590. https://doi.org/10.1104/pp.009175
  11. Claisse, G., Charrier, B., and Kreis, M. (2007). The Arabidopsis thaliana GSK3/Shaggy like kinase AtSK3-2 modulates floral cell expansion. Plant Mol. Biol. 64, 113-124. https://doi.org/10.1007/s11103-007-9138-y
  12. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
  13. Coppe, A., Ferrari, F., Bisognin, A., Danieli, G.A., Ferrari, S., Bicciato, S., and Bortoluzzi, S. (2009). Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation. Nucleic Acids Res. 37, 533-549. https://doi.org/10.1093/nar/gkn948
  14. Dal Santo, S., Stampfl, H., Krasensky, J., Kempa, S., Gibon, Y., Petutschnig, E., Rozhon, W., Heuck, A., Clausen, T., and Jonaka, C. (2004). Stress-induced GSK3 regulates the Redox stress response by phosphorylating glucose-6-phosphate dehydrogenase in Arabidopsis. Plant Cell 24, 3380-3392.
  15. de Folter, S., Immink, R.G., Kieffer, M., Parenicova, L., Henz, S.R., Weigel, D., Busscher, M., Kooiker, M., Colombo, L., et al. (2005). Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell 17, 1424-1433. https://doi.org/10.1105/tpc.105.031831
  16. de la Fuente van Bentem, S., Anrather, D., Dohnal, I., Roitinger, E., Csaszar, E., Joore, J., Buijnink, J., Carreri, A., Forzani, C., Lorkovic, Z.J., et al. (2008). Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis. J. Proteome Res. 7, 2458-2470. https://doi.org/10.1021/pr8000173
  17. Dietrich, C.R., Han, G., Chen, M., Berg, R.H., Dunn, T.M., and Cahoon, E.B. (2008). Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability. Plant J. 54, 284-298. https://doi.org/10.1111/j.1365-313X.2008.03420.x
  18. Doble, B.W., and Woodgett, J.R. (2003). GSK3: tricks of the trade for a multi-tasking kinase. J. Cell. Sci. 116, 1175-1186. https://doi.org/10.1242/jcs.00384
  19. Dong, X., Feng, H., Xu, M., Lee, J., Kim, Y.K., Lim, Y.P., Piao, Z., Park, Y.D., Ma, H., and Hur, Y. (2013). Comprehensive analysis of genic male sterility-related genes in Brassica rapa using a newly developed Br300K oligomeric chip. PLoS One 8, e72178. https://doi.org/10.1371/journal.pone.0072178
  20. Dornelas, M.C., Van, Lammeren, A.A., and Kreis, M. (2000). Arabidopsis thaliana SHAGGY-related protein kinases (AtSK11 and 12) function in perianth and gynoecium development. Plant J. 21, 419-429. https://doi.org/10.1046/j.1365-313x.2000.00691.x
  21. Du, Z., Zhou, X., Ling, Y., Zhang, Z., and Su, Z. (2010). agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 38, W64-70. https://doi.org/10.1093/nar/gkq310
  22. Feng, B., Lu, D., Ma, X., Peng, Y., Sun, Y., Ning, G., and Ma, H. (2012). Regulation of the Arabidopsis anther transcriptome by DYT1 for pollen development. Plant J. 72, 612-624. https://doi.org/10.1111/j.1365-313X.2012.05104.x
  23. Filichkin, S.A., Leonard, J.M., Monteros, A., Liu, P.P., and Nonogaki, H. (2004). A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant physiol. 134, 1080-1087. https://doi.org/10.1104/pp.103.035998
  24. Frame, S, and Cohen, P. (2001). GSK3 takes centre stage more than 20 years after its discovery. Biochem. J. 359, 1-16. https://doi.org/10.1042/0264-6021:3590001
  25. Gao, J., Thelen, J.J., Dunker, A.K., and Xu, D. (2010). Musite, a tool for global prediction of general and kinase-specific phosphorylation sites. Mol. Cell. Proteomics 9, 2586-2600. https://doi.org/10.1074/mcp.M110.001388
  26. Gibalova, A., Renak, D., Matczuk, K., Dupl'akova, N., Chab, D., Twell, D., and Honys, D. (2009). AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen. Plant Mol. Biol. 70, 581-601. https://doi.org/10.1007/s11103-009-9493-y
  27. Guan, Y., Meng, X., Khanna, R., LaMontagne, E., Liu, Y., and Zhang, S. (2014). Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in Arabidopsis. PLoS Genet. 10, e1004384. https://doi.org/10.1371/journal.pgen.1004384
  28. Gupta, R., Ting, J.T., Sokolov, L.N., Johnson, S.A., and Luan, S. (2002). A tumor suppressor homolog, AtPTEN1, is essential for pollen development in Arabidopsis. Plant Cell 14, 2495-2507. https://doi.org/10.1105/tpc.005702
  29. Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27, 297-300. https://doi.org/10.1093/nar/27.1.297
  30. Iwata, Y., Nishino, T., Iwano, M., Takayama, S., and Koizumi, N. (2012). Role of the plant-specific endoplasmic reticulum stressinducible gene TIN1 in the formation of pollen surface structure in Arabidopsis thaliana. Plant Biotechnol. 29, 51-56. https://doi.org/10.5511/plantbiotechnology.11.1228a
  31. Javelle, M., Marco, C.F., and Timmermans, M. (2011). In situ hybridization for the precise localization of transcripts in plants. J. Vis. Exp. 57, e3328.
  32. Jonak, C., and Hirt, H. (2002). Glycogen synthase kinase 3/SHAGGY-like kinases in plants: an emerging family with novel functions. Trends Plant Sci. 7, 457-461. https://doi.org/10.1016/S1360-1385(02)02331-2
  33. Jope, R.S., and Johnson, G.V. (2004). The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci. 29, 95-102. https://doi.org/10.1016/j.tibs.2003.12.004
  34. Kaidanovich-Beilin, O., and Woodgett, J.R. (2011). GSK-3: functional insights from cell biology and animal models. Front. Mol. Neurosci. 4, 40.
  35. Kim, T., Guan, S., Sun, Y., Deng, Z., Tang, W., Shang, J., Sun, Y., Burlingame, A.L., and Wang Z. (2009). Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat. Cell Biol. 11, 1254-1260. https://doi.org/10.1038/ncb1970
  36. Kofuji, R., Sumikawa, N., Yamasaki, M., Kondo, K., Ueda, K., Ito, M., and Hasebe, M. (2003). Evolution and divergence of the MADS-box gene family based on genome-wide expression analyses. Mol. Biol. Evol. 20, 1963-1977. https://doi.org/10.1093/molbev/msg216
  37. Kondo, Y., Ito, T., Nakagami, H., Hirakawa, Y., Saito, M., Tamaki, T., Shirasu, K., and Fukuda, H. (2014). Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling. Nat. Commun. 5, 3504.
  38. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  39. Li, J., and Nam, K.H. (2002). Regulation of brassinosteroid signaling by GSK3/SHAGGY-like kinase. Science 295, 1299-1301.
  40. Liu, J., Zhang, Y., Qin, G., Tsuge, T., Sakaguchi, N., Luo, G., Sun, K., Shi, D., Aki, S., Zheng N., et al. (2008). Targeted degradation of the cyclin-dependent kinase inhibitor ICK4/KRP6 by RINGtype E3 ligases is essential for mitotic cell cycle progression during Arabidopsis gametogenesis. Plant Cell 20, 1538-1554. https://doi.org/10.1105/tpc.108.059741
  41. Ma, H. (2005). Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu. Rev. Plant Biol. 56, 393-434. https://doi.org/10.1146/annurev.arplant.55.031903.141717
  42. Moon, S., Kim, S.R., Zhao, G., Yi, J., Yoo, Y., Jin, P., Lee, S.W., Jung, K.H., Zhang, D., An, G. (2013). Rice glycosyltransferase1 encodes a glycosyltransferase essential for pollen wall formation. Plant Physiol. 161, 663-675. https://doi.org/10.1104/pp.112.210948
  43. Peterson, R., Slovin, J.P., and Chen C. (2010). A simplified method for differential staining of aborted and non-aborted pollen grains. Int. J. Plant Biol. 1, e13. https://doi.org/10.4081/pb.2010.e13
  44. Phan, H.A., Iacuone, S., Li, S.F., and Parish, R.W. (2011). The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell. 23, 2209-2224. https://doi.org/10.1105/tpc.110.082651
  45. Piao, H.L., Lim, J.H., Kim, S.J., Cheong, G.W., and Hwang, I. (2001). Constitutive over-expression of AtGSK1 induces NaCL stress response in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. Plant J. 27, 305-314. https://doi.org/10.1046/j.1365-313x.2001.01099.x
  46. Renak, D., Dupl'akova, N., and Honys, D. (2012). Wide-scale screening of T-DNA lines for transcription factor genes affecting male gametophyte development in Arabidopsis. Sex. Plant Reprod. 25, 39-60. https://doi.org/10.1007/s00497-011-0178-8
  47. Rozhon, W., Mayerhofer, J., Petutschnig, E., Fujioka, S., and Jonak, C. (2010). ASKtheta, a clade-III Arabidopsis GSK3, functions in the brassinosteroid signalling pathway. Plant J. 62, 215-223. https://doi.org/10.1111/j.1365-313X.2010.04145.x
  48. Saidi, Y., Hearn, T.J., and Coates, J.C. (2012). Function and evolution of 'green' GSK3/Shaggy-like kinases. Trends Plant Sci. 17, 39-46. https://doi.org/10.1016/j.tplants.2011.10.002
  49. Sancenon, V., Puig, S., Mateu-Andres, I., Dorcey, E., Thiele, D.J., and Penarrubia L. (2004). The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J. Biol. Chem. 279, 15348-15355. https://doi.org/10.1074/jbc.M313321200
  50. Sanders, P.M., Bui, A.Q., Weterings, K., McIntire, K., Hsu, Y.-C., Lee, P.Y., Truong, M.T., Beals, T., and Goldberg, R. (1999). Anther developmental defects in Arabidopsis thaliana malesterile mutants. Sex. Plant Reprod. 11, 297-322. https://doi.org/10.1007/s004970050158
  51. Schiott, M., Romanowsky, S.M., Baekgaard, L., Jakobsen, M.K., Palmgren, M.G., and Harper, J.F. (2004). A plant plasma membrane $Ca^{2+}$ pump is required for normal pollen tube growth and fertilization. Proc. Natl. Acad. Sci. USA 101, 9502-9507. https://doi.org/10.1073/pnas.0401542101
  52. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504. https://doi.org/10.1101/gr.1239303
  53. Smyth, D.R., Bowman, J.L., and Meyerowitz, E.M. (1990). Early flower development in Arabidopsis. Plant Cell 2, 755-767. https://doi.org/10.1105/tpc.2.8.755
  54. Sonnhammer, E.L., and Ostlund, G. (2015). InParanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic. Nucleic Acids Res. 43, D234-239. https://doi.org/10.1093/nar/gku1203
  55. Soto, G., Alleva, K., Mazzella, M.A., Amodeo, G., and Muschietti, J.P. (2008). AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Lett. 582, 4077-4082. https://doi.org/10.1016/j.febslet.2008.11.002
  56. Soto, G., Fox, R., Ayub, N., Alleva, K., Guaimas, F., Erijman, E.J., Mazzella, A., Amodeo, G., and Muschietti, J. (2010). TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana. Plant J. 64, 1038-1047. https://doi.org/10.1111/j.1365-313X.2010.04395.x
  57. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  58. Tichtinsky, G., Tavares, R., Takvorian, A., Schwebel-Dugue, N., Twell, D., and Kreis, M. (1998). An evolutionary conserved clade of plant GSK-3/shaggy-like protein kinase genes preferentially expressed in developing pollen. Biochim. Biophys. Acta 1442, 261-273. https://doi.org/10.1016/S0167-4781(98)00187-0
  59. Toufighi, K., Brady, S.M., Austin, R., Ly, E., and Provart, N.J. (2005). The botany array resource: e-Northerns, expression angling, and promoter analyses. Plant J. 43, 153-163. https://doi.org/10.1111/j.1365-313X.2005.02437.x
  60. Twell, D. (2011). Male gametogenesis and germline specification in flowering plants. Sex. Plant Reprod. 24, 149-160. https://doi.org/10.1007/s00497-010-0157-5
  61. Wang, R.S., Pandey, S., Li, S., Gookin, T.E., Zhao, Z., Albert, R., and Assmann, S.M. (2011). Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics 12, 216. https://doi.org/10.1186/1471-2164-12-216
  62. Wang, C., Shang, J.X., Chen, Q.X., Oses-Prieto, J.A., Bai, M.Y., Yang, Y., Yuan, M., Zhang, Y.L., Mu, C.C., Deng Z., et al. (2013a). Identification of BZR1-interacting proteins as potential components of the brassinosteroid signaling pathway in Arabidopsis through tandem affinity purification. Mol. Cell. Proteomics 12, 3653-3665. https://doi.org/10.1074/mcp.M113.029256
  63. Wang, L., Wang, W., Wang, Y.Q., Liu, Y.Y., Wang, J.X., Zhang, X.Q., Ye, D., and Chen, L.Q. (2013b). Arabidopsis galacturonosyltransferase (GAUT) 13 and GAUT14 have redundant functions in pollen tube growth. Mol. Plant 6, 1131-1148. https://doi.org/10.1093/mp/sst084
  64. Wellmer, F., Riechmann, J.L., Alves-Ferreira, M., and Meyerowitz, E.M. (2004). Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell 16, 1314-1326. https://doi.org/10.1105/tpc.021741
  65. Wijeratne, A.J., Zhang, W., Sun, Y., Liu, W., Albert, R., Zheng, Z., Oppenheimer, D.G., Zhao, D., and Ma, H. (2007). Differential gene expression in Arabidopsis wild-type and mutant anthers: insights into anther cell differentiation and regulatory networks. Plant J. 52, 14-29. https://doi.org/10.1111/j.1365-313X.2007.03217.x
  66. Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V., and Provart, N.J. (2007). An "Electronic Fluorescent Pictograph" browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2, e718. https://doi.org/10.1371/journal.pone.0000718
  67. Xu, H., Knox, R.B., Taylor, P.E., and Singh, M.B. (1995). Bcp1, a gene required for male sterility in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 92, 2106-2110. https://doi.org/10.1073/pnas.92.6.2106
  68. Xu, J., Yang, C., Yuan, Z., Zhang, D., Gondwe, M.Y., Ding, Z., Liang, W., Zhang, D., and Wilson, Z.A. (2010). The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell 22, 91-107. https://doi.org/10.1105/tpc.109.071803
  69. Yan, Z., Zhao, J., Peng, P., Chihara, R.K., and Li, J. (2009). BIN2 functions redundantly with other Arabidopsis GSK3-like kinases to regulate brassicnosteroid signaling. Plant Physiol. 150, 710-721. https://doi.org/10.1104/pp.109.138099
  70. Yang, T.J., Kim, J.S., Lim, K.B., Kwon, S.J., Kim, J.A., Jin, M., Park, J.Y., Lim, M.H., Kim, H., Kim, S.H., et al. (2005). The Korea Brassica genome project: a glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis. Comp. Funct. Genomics 6, 138-146. https://doi.org/10.1002/cfg.465
  71. Yang, C., Vizcay-Barrena, G., Conner, K., and Wilson, Z.A. (2007). MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19, 3530-3548. https://doi.org/10.1105/tpc.107.054981
  72. Yang, J., Wu, J., Romanovicz, D., Clark, G., and Roux, S.J. (2013). Co-regulation of exine wall patterning, pollen fertility and anther dehiscence by Arabidopsis apyrases 6 and 7. Plant Physiol. Biochem. 69, 62-73. https://doi.org/10.1016/j.plaphy.2013.04.022
  73. Zhang, S., Cai, Z., and Wang, X. (2009). The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc. Natl. Acad. Sci. USA. 106, 4543-4548. https://doi.org/10.1073/pnas.0900349106
  74. Zhao, J., Peng, P., Schmitz, R.J., Decker, A.D., Tax, F.E., and Li, J. (2002). Two putative BIN2 substrates are nuclear components of brassinosteroid signaling. Plant Physiol. 130, 1221-1229. https://doi.org/10.1104/pp.102.010918
  75. Zhu, J., Chen, H., Li, H., Gao, J.F., Jiang, H., Wang, C., Guan, Y.F., and Yang, Z.N. (2008). Defective in tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant J. 55, 266-277. https://doi.org/10.1111/j.1365-313X.2008.03500.x
  76. Zuberi, K., Franz, M., Rodriguez, H., Montojo, J., Lopes, C.T., Bader, G.D., and Morris, Q. (2013). GeneMANIA prediction server 2013 update. Nucleic Acids Res. 41, W115-122 https://doi.org/10.1093/nar/gkt533

피인용 문헌

  1. Comprehensive analysis of Ogura cytoplasmic male sterility-related genes in turnip (Brassica rapa ssp. rapifera) using RNA sequencing analysis and bioinformatics vol.14, pp.6, 2019, https://doi.org/10.1371/journal.pone.0218029
  2. Identification of fertility-related genes for maize CMS-S via Bulked Segregant RNA-Seq vol.8, pp.None, 2015, https://doi.org/10.7717/peerj.10015