DOI QR코드

DOI QR Code

Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9

  • Koo, Taeyoung (Center for Genome Engineering, Institute for Basic Science) ;
  • Lee, Jungjoon (The Institute of Molecular Biology and Genetics) ;
  • Kim, Jin-Soo (Center for Genome Engineering, Institute for Basic Science)
  • 투고 : 2015.04.17
  • 심사 : 2015.04.30
  • 발행 : 2015.06.30

초록

Programmable nucleases, which include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and RNA-guided engineered nucleases (RGENs) repurposed from the type II clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system are now widely used for genome editing in higher eukaryotic cells and whole organisms, revolutionising almost every discipline in biological research, medicine, and biotechnology. All of these nucleases, however, induce off-target mutations at sites homologous in sequence with on-target sites, limiting their utility in many applications including gene or cell therapy. In this review, we compare methods for detecting nuclease off-target mutations. We also review methods for profiling genome-wide off-target effects and discuss how to reduce or avoid off-target mutations.

키워드

참고문헌

  1. Bae, S., Park, J., and Kim, J.S. (2014). Cas-OFFinder: A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473-1475. https://doi.org/10.1093/bioinformatics/btu048
  2. Bibikova, M., Beumer, K., Trautman, J.K., and Carroll, D. (2003). Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764. https://doi.org/10.1126/science.1079512
  3. Bitinaite, J., Wah, D.A., Aggarwal, A.K., and Schildkraut, I. (1998).FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA 95, 10570-10575. https://doi.org/10.1073/pnas.95.18.10570
  4. Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A., and Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509-1512. https://doi.org/10.1126/science.1178811
  5. Brunet, E., Simsek, D., Tomishima, M., DeKelver, R., Choi, V.M., Gregory, P., Urnov, F., Weinstock, D.M., and Jasin, M. (2009). Chromosomal translocations induced at specified loci in human stem cells. Proc. Natl. Acad. Sci. USA 106, 10620-10625. https://doi.org/10.1073/pnas.0902076106
  6. Cho, S.W., Kim, S., Kim, J.M., and Kim, J.S. (2013a). Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230-232. https://doi.org/10.1038/nbt.2507
  7. Cho, S.W., Lee, J., Carroll, D., Kim, J.S., and Lee, J. (2013b). Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins. Genetics 195, 1177-1180. https://doi.org/10.1534/genetics.113.155853
  8. Cho, S.W., Kim, S., Kim, Y., Kweon, J., Kim, H.S., Bae, S., and Kim, J.S. (2014). Analysis of off-target effects of CRISPR/Casderived RNA-guided endonucleases and nickases. Genome Res. 24, 132-141. https://doi.org/10.1101/gr.162339.113
  9. Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823. https://doi.org/10.1126/science.1231143
  10. Cradick, T.J., Fine, E.J., Antico, C.J., and Bao, G. (2013) CRISPR/as9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. 41, 9584-9592. https://doi.org/10.1093/nar/gkt714
  11. Crosetto, N., Mitra, A., Silva, M.J., Bienko, M., Dojer, N., Wang, Q., Karaca, E., Chiarle, R., Skrzypczak, M., Ginalski, K., et al. (2013). Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat. Methods 10, 361-365. https://doi.org/10.1038/nmeth.2408
  12. Frock, R.L., Hu, J., Meyers, R.M., Ho, Y.J., Kii, E., and Alt, F.W. (2015). Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 33, 179-186. https://doi.org/10.1038/nbt.3101
  13. Fu, Y., Foden, J.A., Khayter, C., Maeder, M.L., Reyon, D., Joung, J.K., and Sander, J.D. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822-826. https://doi.org/10.1038/nbt.2623
  14. Fu, Y., Sander, J.D., Reyon, D., Cascio, V.M., and Joung, J.K. (2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279-284. https://doi.org/10.1038/nbt.2808
  15. Gabriel, R., Lombardo, A., Arens, A., Miller, J.C., Genovese, P., Kaeppel, C., Nowrouzi, A., Bartholomae, C.C., Wang, J., Friedman, G., et al. (2011). An unbiased genome-wide analysis of zincfinger nuclease specificity. Nat. Biotechnol. 29, 816-823. https://doi.org/10.1038/nbt.1948
  16. Hendel, A., Kildebeck, E.J., Fine, E.J., Clark, J.T., Punjya, N., Sebastiano, V., Bao, G., and Porteus, M.H. (2014). Quantifying genome-editing outcomes at endogenous loci with SMRT sequencing. Cell Rep. 7, 293-305. https://doi.org/10.1016/j.celrep.2014.02.040
  17. Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X., Shalem, O., et al. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827-832. https://doi.org/10.1038/nbt.2647
  18. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821. https://doi.org/10.1126/science.1225829
  19. Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., and Doudna, J. (2013). RNA-programmed genome editing in human cells. Elife 2, e00471.
  20. Kim, H., and Kim, J.S. (2014). A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15, 321-334. https://doi.org/10.1038/nrg3686
  21. Kim, Y.G., Cha, J., and Chandrasegaran, S. (1996). Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 93, 1156-1160. https://doi.org/10.1073/pnas.93.3.1156
  22. Kim, H.J., Lee, H.J., Kim, H., Cho, S.W., and Kim, J.S. (2009). Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. 19, 1279-1288. https://doi.org/10.1101/gr.089417.108
  23. Kim, J.S., Lee, H.J., and Carroll, D. (2010). Genome editing with modularly assembled zinc-finger nucleases. Nat. Methods 7, 91; author reply 91-92.
  24. Kim, H., Um, E., Cho, S.R., Jung, C., and Kim, J.S. (2011). Surrogate reporters for enrichment of cells with nucleaseinduced mutations. Nat. Methods 8, 941-943. https://doi.org/10.1038/nmeth.1733
  25. Kim, E., Kim, S., Kim, D.H., Choi, B.S., Choi, I.Y., and Kim, J.S. (2012). Precision genome engineering with programmable DNA-nicking enzymes. Genome Res. 22, 1327-1333. https://doi.org/10.1101/gr.138792.112
  26. Kim, Y., Kweon, J., Kim, A., Chon, J.K., Yoo, J.Y., Kim, H.J., Kim, S., Lee, C., Jeong, E., Chung, E., et al. (2013a). A library of TAL effector nucleases spanning the human genome. Nat. Biotechnol. 31, 251-258. https://doi.org/10.1038/nbt.2517
  27. Kim, Y., Kweon, J., and Kim, J.S. (2013b). TALENs and ZFNs are associated with different mutation signatures. Nat. Methods 10, 185. https://doi.org/10.1038/nmeth.2364
  28. Kim, Y.K., Wee, G., Park, J., Kim, J., Baek, D., Kim, J.S., and Kim, V.N. (2013c). TALEN-based knockout library for human microRNAs. Nat. Struct. Mol. Biol. 20, 1458-1464. https://doi.org/10.1038/nsmb.2701
  29. Kim, J.M., Kim, D., Kim, S., and Kim, J.S. (2014a). Genotyping with CRISPR-Cas-derived RNA-guided endonucleases. Nat. Commun. 5, 3157.
  30. Kim, S., Kim, D., Cho, S.W., Kim, J., and Kim, J.S. (2014b). Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012- 1019. https://doi.org/10.1101/gr.171322.113
  31. Kim, D., Bae, S., Park, J., Kim, E., Kim, S., Yu, H.R., Hwang, J., Kim, J.I. and Kim, J.S. (2015). Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12, 237-243. https://doi.org/10.1038/nmeth.3284
  32. Kuscu, C., Arslan, S., Singh, R., Thorpe, J., and Adli, M. (2014). Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32, 677-683. https://doi.org/10.1038/nbt.2916
  33. Lee, H.J., Kim, E., and Kim, J.S. (2010). Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. 20, 81-89. https://doi.org/10.1101/gr.099747.109
  34. Lee, H.J., Kweon, J., Kim, E., Kim, S. and Kim, J.S. (2012) .Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res. 22, 539-548. https://doi.org/10.1101/gr.129635.111
  35. Lin, Y., Cradick, T.J., Brown, M.T., Deshmukh, H., Ranjan, P., Sarode, N., Wile, B.M., Vertino, P.M., Stewart, F.J. and Bao, G. (2014). CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 42, 7473-7485. https://doi.org/10.1093/nar/gku402
  36. Mali, P., Aach, J., Stranges, P.B., Esvelt, K.M., Moosburner, M., Kosuri, S., Yang, L. and Church, G.M. (2013a). CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833-838. https://doi.org/10.1038/nbt.2675
  37. Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., and Church, G.M. (2013b). RNA-guided human genome engineering via Cas9. Science 339, 823-826. https://doi.org/10.1126/science.1232033
  38. Miller, J.C., Tan, S., Qiao, G., Barlow, K.A., Wang, J., Xia, D.F., Meng, X., Paschon, D.E., Leung, E., Hinkley, S.J., et al. (2011). A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29, 143-148. https://doi.org/10.1038/nbt.1755
  39. Moscou, M.J., and Bogdanove, A.J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501. https://doi.org/10.1126/science.1178817
  40. Mussolino, C., Morbitzer, R., Lutge, F., Dannemann, N., Lahaye, T. and Cathomen, T. (2011). A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 39, 9283-9293. https://doi.org/10.1093/nar/gkr597
  41. Parant, J.M., George, S.A., Pryor, R., Wittwer, C.T., and Yost, H.J. (2009). A rapid and efficient method of genotyping zebrafish mutants. Dev. Dyn. 238, 3168-3174. https://doi.org/10.1002/dvdy.22143
  42. Park, C.Y., Kim, J., Kweon, J., Son, J.S., Lee, J.S., Yoo, J.E., Cho, S.R., Kim, J.H., Kim, J.S., and Kim, D.W. (2014). Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proc. Natl. Acad. Sci. USA 111, 9253-9258. https://doi.org/10.1073/pnas.1323941111
  43. Pattanayak, V., Ramirez, C.L., Joung, J.K., and Liu, D.R. (2011). Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat. Methods 8, 765-770. https://doi.org/10.1038/nmeth.1670
  44. Pattanayak, V., Lin, S., Guilinger, J.P., Ma, E., Doudna, J.A., and Liu, D.R. (2013). High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31, 839-843. https://doi.org/10.1038/nbt.2673
  45. Ramakrishna, S., Kwaku Dad, A.B., Beloor, J., Gopalappa, R., Lee, S.K., and Kim, H. (2014). Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 24, 1020-1027. https://doi.org/10.1101/gr.171264.113
  46. Ran, F.A., Hsu, P.D., Lin, C.Y., Gootenberg, J.S., Konermann, S., Trevino, A.E., Scott, D.A., Inoue, A., Matoba, S., Zhang, Y., et al. (2013). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380-1389. https://doi.org/10.1016/j.cell.2013.08.021
  47. Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zetsche, B., Shalem, O., Wu, X., Makarova, K.S., et al. (2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186-191. https://doi.org/10.1038/nature14299
  48. Smith, C., Gore, A., Yan, W., Abalde-Atristain, L., Li, Z., He, C., Wang, Y., Brodsky, R.A., Zhang, K., Cheng, L., et al. (2014). Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell 15, 12-13. https://doi.org/10.1016/j.stem.2014.06.011
  49. Tebas, P., Stein, D., Tang, W.W., Frank, I., Wang, S.Q., Lee, G., Spratt, S.K., Surosky, R.T., Giedlin, M.A., Nichol, G., et al. (2014). Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl. J. Med. 370, 901-910. https://doi.org/10.1056/NEJMoa1300662
  50. Tsai, S.Q., Zheng, Z., Nguyen, N.T., Liebers, M., Topkar, V.V., Thapar, V., Wyvekens, N., Khayter, C., Iafrate, A.J., Le, L.P., et al. (2015). GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187-197. https://doi.org/10.1038/nbt.3117
  51. Urnov, F.D., Miller, J.C., Lee, Y.L., Beausejour, C.M., Rock, J.M., Augustus, S., Jamieson, A.C., Porteus, M.H., Gregory, P.D., and Holmes, M.C. (2005). Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646-651. https://doi.org/10.1038/nature03556
  52. Veres, A., Gosis, B.S., Ding, Q., Collins, R., Ragavendran, A., Brand, H., Erdin, S., Cowan, C.A., Talkowski, M.E., and Musunuru, K. (2014). Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 15, 27-30. https://doi.org/10.1016/j.stem.2014.04.020
  53. Vouillot, L., Thelie, A., and Pollet, N. (2015). Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 (Bethesda) 5, 407-415. https://doi.org/10.1534/g3.114.015834
  54. Wu, X., Scott, D.A., Kriz, A.J., Chiu, A.C., Hsu, P.D., Dadon, D.B., Cheng, A.W., Trevino, A.E., Konermann, S., Chen, S., et al. (2014). Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32, 670-676. https://doi.org/10.1038/nbt.2889
  55. Yusa, K., Rashid, S.T., Strick-Marchand, H., Varela, I., Liu, P.Q., Paschon, D.E., Miranda, E., Ordonez, A., Hannan, N.R., Rouhani, F.J., et al. (2011). Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478, 391-394. https://doi.org/10.1038/nature10424
  56. Zhu, X., Xu, Y., Yu, S., Lu, L., Ding, M., Cheng, J., Song, G., Gao, X., Yao, L., Fan, D., et al. (2014). An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system. Sci. Rep. 4, 6420. https://doi.org/10.1038/srep06420
  57. Zuris, J.A., Thompson, D.B., Shu, Y., Guilinger, J.P., Bessen, J.L., Hu, J.H., Maeder, M.L., Joung, J.K., Chen, Z.Y. and Liu, D.R. (2015). Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33, 73-80. https://doi.org/10.1038/nbt.3081

피인용 문헌

  1. Origins of Programmable Nucleases for Genome Engineering vol.428, pp.5, 2016, https://doi.org/10.1016/j.jmb.2015.10.014
  2. Genome editing comes of age vol.11, pp.9, 2016, https://doi.org/10.1038/nprot.2016.104
  3. CRISPR-Cas9 therapeutics in cancer: promising strategies and present challenges vol.1866, pp.2, 2016, https://doi.org/10.1016/j.bbcan.2016.09.002
  4. CRISPR-Cas9 technology and its application in haematological disorders vol.175, pp.2, 2016, https://doi.org/10.1111/bjh.14297
  5. Advances in the Study of Heart Development and Disease Using Zebrafish vol.3, pp.2, 2016, https://doi.org/10.3390/jcdd3020013
  6. Genome editing using FACS enrichment of nuclease-expressing cells and indel detection by amplicon analysis vol.12, pp.3, 2017, https://doi.org/10.1038/nprot.2016.165
  7. Engineering Hematopoietic Cells for Cancer Immunotherapy vol.39, pp.7, 2016, https://doi.org/10.1097/CJI.0000000000000134
  8. Functional Correction of Large Factor VIII Gene Chromosomal Inversions in Hemophilia A Patient-Derived iPSCs Using CRISPR-Cas9 vol.17, pp.2, 2015, https://doi.org/10.1016/j.stem.2015.07.001
  9. A Perspective on the State of Genome Editing vol.24, pp.3, 2016, https://doi.org/10.1038/mt.2016.28
  10. Gene editing in clinical isolates of Candida parapsilosis using CRISPR/Cas9 vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-08500-1
  11. Multidimensional Genome-wide Analyses Show Accurate FVIII Integration by ZFN in Primary Human Cells vol.24, pp.3, 2016, https://doi.org/10.1038/mt.2015.223
  12. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases vol.16, pp.10, 2015, https://doi.org/10.3390/ijms161024751
  13. CRISPR-Cas9 for medical genetic screens: applications and future perspectives vol.53, pp.2, 2016, https://doi.org/10.1136/jmedgenet-2015-103409
  14. Genome editing system CRISPR/CAS9 and peculiarities of its application in monocots vol.64, pp.2, 2017, https://doi.org/10.1134/S1021443717010071
  15. DNA-free genome editing methods for targeted crop improvement vol.35, pp.7, 2016, https://doi.org/10.1007/s00299-016-1982-2
  16. Streptococcus thermophilus CRISPR-Cas9 Systems Enable Specific Editing of the Human Genome vol.24, pp.3, 2016, https://doi.org/10.1038/mt.2015.218
  17. CRISPR/Cas9: a breakthrough in generating mouse models for endocrinologists vol.57, pp.2, 2016, https://doi.org/10.1530/JME-15-0305
  18. DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins vol.7, 2016, https://doi.org/10.3389/fpls.2016.01904
  19. Genome Editing in Plants: An Overview of Tools and Applications vol.2017, 2017, https://doi.org/10.1155/2017/7315351
  20. The societal opportunities and challenges of genome editing vol.16, pp.1, 2015, https://doi.org/10.1186/s13059-015-0812-0
  21. Recent advances in RNAi-based strategies for therapy and prevention of HIV-1/AIDS vol.103, 2016, https://doi.org/10.1016/j.addr.2016.03.005
  22. Resources for the design of CRISPR gene editing experiments vol.16, pp.1, 2015, https://doi.org/10.1186/s13059-015-0823-x
  23. Genome editing: the road of CRISPR/Cas9 from bench to clinic vol.48, pp.10, 2016, https://doi.org/10.1038/emm.2016.111
  24. Efficient genomic correction methods in human iPS cells using CRISPR–Cas9 system vol.101, 2016, https://doi.org/10.1016/j.ymeth.2015.10.015
  25. How specific is CRISPR/Cas9 really? vol.29, 2015, https://doi.org/10.1016/j.cbpa.2015.10.001
  26. Generation of improved human cerebral organoids from single copyDYRK1Aknockout induced pluripotent stem cells in trisomy 21: hypothetical solutions for neurodevelopmental models and therapeutic alternatives in down syndrome vol.40, pp.12, 2016, https://doi.org/10.1002/cbin.10694
  27. Designed nucleases for targeted genome editing vol.14, pp.2, 2016, https://doi.org/10.1111/pbi.12465
  28. A Critical Analysis of the Role of SNARE Protein SEC22B in Antigen Cross-Presentation vol.19, pp.13, 2017, https://doi.org/10.1016/j.celrep.2017.06.013
  29. Methods for Optimizing CRISPR-Cas9 Genome Editing Specificity vol.63, pp.3, 2016, https://doi.org/10.1016/j.molcel.2016.07.004
  30. Modeling and correction of structural variations in patient-derived iPSCs using CRISPR/Cas9 vol.11, pp.11, 2016, https://doi.org/10.1038/nprot.2016.129
  31. Unexpected mutations after CRISPR–Cas9 editing in vivo vol.14, pp.6, 2017, https://doi.org/10.1038/nmeth.4293
  32. Fine-Tuning Next-Generation Genome Editing Tools vol.34, pp.7, 2016, https://doi.org/10.1016/j.tibtech.2016.03.007
  33. Systems-level interference strategies to decipher host factors involved in bacterial pathogen interaction: from RNAi to CRISPRi vol.39, 2017, https://doi.org/10.1016/j.mib.2017.08.002
  34. Therapeutic applications of CRISPR RNA-guided genome editing vol.16, pp.1, 2017, https://doi.org/10.1093/bfgp/elw032
  35. Genome Engineering with TALE and CRISPR Systems in Neuroscience vol.7, 2016, https://doi.org/10.3389/fgene.2016.00047
  36. Genetic modification of food animals vol.44, 2017, https://doi.org/10.1016/j.copbio.2016.10.007
  37. Germline Modification and Engineering in Avian Species vol.38, pp.9, 2015, https://doi.org/10.14348/molcells.2015.0225
  38. Genome engineering:Drosophila melanogasterand beyond vol.5, pp.2, 2016, https://doi.org/10.1002/wdev.214
  39. The Rise of CRISPR/Cas for Genome Editing in Stem Cells vol.2016, 2016, https://doi.org/10.1155/2016/8140168
  40. Genome editing for crop improvement: Challenges and opportunities vol.6, pp.4, 2015, https://doi.org/10.1080/21645698.2015.1129937
  41. Genome editing in zebrafish: a practical overview vol.15, pp.4, 2016, https://doi.org/10.1093/bfgp/elv051
  42. Applications of Alternative Nucleases in the Age of CRISPR/Cas9 vol.18, pp.12, 2017, https://doi.org/10.3390/ijms18122565
  43. Concise Review: Induced Pluripotent Stem Cell Models for Neuropsychiatric Diseases vol.6, pp.12, 2017, https://doi.org/10.1002/sctm.17-0150
  44. A protocol for custom CRISPR Cas9 donor vector construction to truncate genes in mammalian cells using pcDNA3 backbone vol.19, pp.1, 2018, https://doi.org/10.1186/s12867-018-0105-8
  45. CRISPR/dCas9-mediated transcriptional improvement of the biosynthetic gene cluster for the epothilone production in Myxococcus xanthus vol.17, pp.1, 2018, https://doi.org/10.1186/s12934-018-0867-1
  46. Targeted reversion of induced pluripotent stem cells from patients with human cleidocranial dysplasia improves bone regeneration in a rat calvarial bone defect model vol.9, pp.1, 2018, https://doi.org/10.1186/s13287-017-0754-4
  47. A study on endonuclease BspD6I and its stimulus-responsive switching by modified oligonucleotides vol.13, pp.11, 2018, https://doi.org/10.1371/journal.pone.0207302
  48. Agnostic detection of genomic alterations by holistic DNA structural interrogation vol.13, pp.11, 2018, https://doi.org/10.1371/journal.pone.0208054
  49. pp.00063592, 2018, https://doi.org/10.1002/bit.26833
  50. Inhibition of HBV Expression in HBV Transgenic Mice Using AAV-Delivered CRISPR-SaCas9 vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.02080
  51. CRISPR/Cas9 System: A Bacterial Tailor for Genomic Engineering vol.2018, pp.2090-3162, 2018, https://doi.org/10.1155/2018/3797214
  52. Unexpected CRISPR on-target effects pp.1546-1696, 2018, https://doi.org/10.1038/nbt.4207
  53. Advances in understanding disease mechanisms and potential treatments for Crigler–Najjar syndrome vol.6, pp.7, 2018, https://doi.org/10.1080/21678707.2018.1495558
  54. CRISPR GENOME SURGERY IN THE RETINA IN LIGHT OF OFF-TARGETING vol.38, pp.8, 2018, https://doi.org/10.1097/IAE.0000000000002197
  55. Zebrafish Models of Rare Hereditary Pediatric Diseases vol.6, pp.2, 2018, https://doi.org/10.3390/diseases6020043
  56. Methods of Gene Therapy for Treatment of Inherited Epidermolysis Bullosa vol.73, pp.4, 2018, https://doi.org/10.3103/S0096392518040016
  57. A rapid and versatile tool for genomic engineering in Lactococcus lactis vol.18, pp.1, 2019, https://doi.org/10.1186/s12934-019-1075-3
  58. In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease vol.6, pp.None, 2017, https://doi.org/10.12688/f1000research.11243.1
  59. Using pgRNA-Cas9 system to knockout MKL1 inhibited cell migration and proliferation vol.4, pp.1, 2018, https://doi.org/10.1080/23312025.2018.1426255
  60. Editing of Genomic TNFSF9 by CRISPR-Cas9 Can Be Followed by Re-Editing of Its Transcript vol.41, pp.10, 2018, https://doi.org/10.14348/molcells.2018.0209
  61. While it is not deliberate, much of today's biomedical research contains logical and technical flaws, showing a need for corrective action vol.15, pp.4, 2015, https://doi.org/10.7150/ijms.23215
  62. Generation of conditional Acvrl1 knockout mice by CRISPR/Cas9-mediated gene targeting vol.37, pp.None, 2015, https://doi.org/10.1016/j.mcp.2017.11.003
  63. Applications of CRISPR-Cas9 Technology in Translational Research on Solid-Tumor Cancers vol.1, pp.1, 2015, https://doi.org/10.1089/crispr.2017.0001
  64. DIG-seq: a genome-wide CRISPR off-target profiling method using chromatin DNA vol.28, pp.12, 2018, https://doi.org/10.1101/gr.236620.118
  65. Gene Silencing Strategies in Cancer Therapy: An Update for Drug Resistance vol.26, pp.34, 2015, https://doi.org/10.2174/0929867325666180403141554
  66. Harnessing Genome Editing Techniques to Engineer Disease Resistance in Plants vol.10, pp.None, 2015, https://doi.org/10.3389/fpls.2019.00550
  67. Target DNA mutagenesis-based fluorescence assessment of off-target activity of the CRISPR-Cas9 system vol.9, pp.16, 2015, https://doi.org/10.1039/c8ra10017a
  68. Target DNA mutagenesis-based fluorescence assessment of off-target activity of the CRISPR-Cas9 system vol.9, pp.16, 2015, https://doi.org/10.1039/c8ra10017a
  69. The Progress of CRISPR/Cas9-Mediated Gene Editing in Generating Mouse/Zebrafish Models of Human Skeletal Diseases vol.17, pp.None, 2015, https://doi.org/10.1016/j.csbj.2019.06.006
  70. Target-dependent nickase activities of the CRISPR-Cas nucleases Cpf1 and Cas9 vol.4, pp.5, 2015, https://doi.org/10.1038/s41564-019-0382-0
  71. Biallelic mutations in USP45, encoding a deubiquitinating enzyme, are associated with Leber congenital amaurosis vol.56, pp.5, 2015, https://doi.org/10.1136/jmedgenet-2018-105709
  72. Therapeutic application of the CRISPR system: current issues and new prospects vol.138, pp.6, 2019, https://doi.org/10.1007/s00439-019-02028-2
  73. Efficient Gene Editing at Major CFTR Mutation Loci vol.16, pp.None, 2015, https://doi.org/10.1016/j.omtn.2019.02.006
  74. Genome-Editing Technologies: Concept, Pros, and Cons of Various Genome-Editing Techniques and Bioethical Concerns for Clinical Application vol.16, pp.None, 2015, https://doi.org/10.1016/j.omtn.2019.02.027
  75. Delivery of CRISPR/Cas9 for therapeutic genome editing vol.21, pp.7, 2015, https://doi.org/10.1002/jgm.3107
  76. Recent advances in the CRISPR genome editing tool set vol.51, pp.11, 2015, https://doi.org/10.1038/s12276-019-0339-7
  77. Mendelian disorders of the epigenetic machinery: postnatal malleability and therapeutic prospects vol.28, pp.r2, 2015, https://doi.org/10.1093/hmg/ddz174
  78. Utilization of the CRISPR-Cas9 Gene Editing System to Dissect Neuroinflammatory and Neuropharmacological Mechanisms in Parkinson’s Disease vol.14, pp.4, 2019, https://doi.org/10.1007/s11481-019-09844-3
  79. High-resolution specificity profiling and off-target prediction for site-specific DNA recombinases vol.10, pp.1, 2019, https://doi.org/10.1038/s41467-019-09987-0
  80. CRISPR/Cas9-Mediated TERT Disruption in Cancer Cells vol.21, pp.2, 2015, https://doi.org/10.3390/ijms21020653
  81. Genome-wide Cas9 binding specificity in Saccharomyces cerevisiae vol.8, pp.None, 2015, https://doi.org/10.7717/peerj.9442
  82. CRISPR-Cas System: An Approach With Potentials for COVID-19 Diagnosis and Therapeutics vol.10, pp.None, 2020, https://doi.org/10.3389/fcimb.2020.576875
  83. CRISPR/Cas9 for development of disease resistance in plants: recent progress, limitations and future prospects vol.19, pp.1, 2015, https://doi.org/10.1093/bfgp/elz041
  84. Genome editing: the dynamics of continuity, convergence, and change in the engineering of life vol.39, pp.2, 2020, https://doi.org/10.1080/14636778.2020.1730166
  85. Recent advances in genome editing of stem cells for drug discovery and therapeutic application vol.209, pp.None, 2015, https://doi.org/10.1016/j.pharmthera.2020.107501
  86. CRISPR-cas9: a powerful tool towards precision medicine in cancer treatment vol.41, pp.5, 2020, https://doi.org/10.1038/s41401-019-0322-9
  87. Dissecting the Therapeutic Relevance of Gene Therapy in NeuroAIDS: An Evolving Epidemic vol.20, pp.3, 2015, https://doi.org/10.2174/1566523220666200615151805
  88. CRISPR/Cas9 gene drive technology to control transmission of vector‐borne parasitic infections vol.42, pp.9, 2015, https://doi.org/10.1111/pim.12762
  89. A novel GNAS-mutated human induced pluripotent stem cell model for understanding GNAS-mutated tumors vol.42, pp.9, 2015, https://doi.org/10.1177/1010428320962588
  90. CD70 Inversely Regulates Regulatory T Cells and Invariant NKT Cells and Modulates Type 1 Diabetes in NOD Mice vol.205, pp.7, 2020, https://doi.org/10.4049/jimmunol.2000148
  91. TALEN mediated gene editing in a mouse model of Fanconi anemia vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-63971-z
  92. Allosteric inhibition of CRISPR-Cas9 by bacteriophage-derived peptides vol.21, pp.1, 2015, https://doi.org/10.1186/s13059-020-01956-x
  93. Genomic Engineering in Human Hematopoietic Stem Cells: Hype or Hope? vol.2, pp.None, 2015, https://doi.org/10.3389/fgeed.2020.615619
  94. Identifying genome-wide off-target sites of CRISPR RNA-guided nucleases and deaminases with Digenome-seq vol.16, pp.2, 2021, https://doi.org/10.1038/s41596-020-00453-6
  95. Applications and Potential of Genome-Editing Systems in Rice Improvement: Current and Future Perspectives vol.11, pp.7, 2021, https://doi.org/10.3390/agronomy11071359
  96. Genetic manipulations of AMPA glutamate receptors in hippocampal synaptic plasticity vol.194, pp.None, 2021, https://doi.org/10.1016/j.neuropharm.2021.108630
  97. Advances in generating HLA-Universal platelets for transfusion medicine vol.14, pp.None, 2015, https://doi.org/10.1016/j.regen.2021.100053