DOI QR코드

DOI QR Code

FGM micro-gripper under electrostatic and intermolecular Van-der Waals forces using modified couple stress theory

  • Jahangiri, Reza (Department of Mechanical Engineering, Salmas Branch, Islamic Azad University) ;
  • Jahangiri, Hadi (Department of Mechanical Engineering, Salmas Branch, Islamic Azad University) ;
  • Khezerloo, Hamed (Department of Civil Engineering, Salmas Branch, Islamic Azad University)
  • Received : 2014.02.19
  • Accepted : 2014.12.11
  • Published : 2015.06.25

Abstract

In this paper mechanical behavior of the functional gradient materials (FGM) micro-gripper under thermal load and DC voltage is numerically investigated taking into account the effect of intermolecular forces. In contrary to the similar previous works, which have been conducted for homogenous material, here, the FGM material has been implemented. It is assumed that the FGM micro-gripper is made of metal and ceramic and that material properties are changed continuously along the beam thickness according to a given function. The nonlinear governing equations of the static and dynamic deflection of microbeams have been derived using the coupled stress theory. The equations have been solved using the Galerkin based step-by-step linearization method (SSLM). The solution procedure has been evaluated against available data of literature showing good agreement. A parametric study has been conducted, focusing on the combined effects of important parameters included DC voltage, temperature variation, geometrical dimensions and ceramic volume concentration on the dynamic response and stability of the FGM micro-gripper.

Keywords

References

  1. Akbarzadeh, A.H., Hosseini Zad, S.K., Eslami, M.R. and Sadighi, M. (2011), "Mechanical behaviour of functionally graded plates under static and dynamic loading", Proceedings of the Institution of Mechanical Engineers; Part C: J. Mech. Eng. Sci., 225(2), 326-333. https://doi.org/10.1243/09544062JMES2111
  2. Andersen, K.N., Carlson, K., Petersen, D.H., Molhave, K., Eichhorn, K., Fatikow, S. and Molhave, P. (2008), "Electrothermal microgrippers for pick-and-place operations", Microelectron. Eng., 85(5-6), 1128-1130. https://doi.org/10.1016/j.mee.2007.12.080
  3. Beyeler, F., Neild, A., Oberti, S., Bell, D.J., Sun, Y., Dual, J. and Nelson, B.J. (2007), "Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field", Microelectromech. Syst., 16(1), 7-15. https://doi.org/10.1109/JMEMS.2006.885853
  4. Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164
  5. Butefisch, S., Seidemann, V. and Buttgenbach, S. (2002), "Novel micro-pneumatic actuator for MEMS", Sensor. Actuator. A: Phys., 97, 638-645.
  6. Chen, T., Sun, L., Chen, L., Rong, W. and Li, X.F. (2010), "A hybrid-type electrostatically driven microgripper with an integrated vacuum tool", Sensor. Actuator. A: Phys., 158, 320-327. https://doi.org/10.1016/j.sna.2010.01.001
  7. Chronis, N. and Lee, L.P. (2005), "Electrothermally activated su-8 microgripper for single cell manipulation in solution", J. Microelectrome. Syst., 14(4), 857-863. https://doi.org/10.1109/JMEMS.2005.845445
  8. Haddab, Y., Chaillet, N. and Bourjault, A. (2000), "A microgripper using smart piezoelectric actuators", Proceedings of 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000), Takamatsu, Japan, October-November.
  9. Hasanyan, D.J., Betra, R.C. and Harutyunyan, S. (2010), "Pull-in instabilities in functionally graded microthermoelectromechanical systems", J. Therm. Stresses, 31(10), 1006-1021. https://doi.org/10.1080/01495730802250714
  10. Hesselbach, J., Wrege, J. and Raatz, A. (2007), "Micro handling devices supported by electrostatic force", CIRP Annals - Manuf. Technol., 56(1), 45-48. https://doi.org/10.1016/j.cirp.2007.05.013
  11. Hu, F., Yao, J., Qiu, C. and Ren, H. (2010), "A MEMS micromirror driven by electrostatic force", J. Electrostat., 68(3), 237-242. https://doi.org/10.1016/j.elstat.2010.01.005
  12. Israelachvili, J.N. (2011), Intermolecular and Surface Forces, (Revised 3rd Edition), Academic Press.
  13. Kang, Y.A. and Li, X.F. (2009), "Bending of functionally graded cantilever beam with power-law nonlinearity subjected to an end force", Int. J. Nonlinear Mech., 44(6), 696-703. https://doi.org/10.1016/j.ijnonlinmec.2009.02.016
  14. Kawamoto, H. and Tsuji, K. (2011), "Manipulation of small particles utilizing electrostatic force", Adv. Powder Technol., 22(5), 602-607. https://doi.org/10.1016/j.apt.2010.09.001
  15. Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92(3), 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024
  16. Keller, C.G. (1998), "Microfabricated silicon high aspect ratio flexures for in-plane motion", Ph.D. Thesis, University of California, Berkeley, CA, USA.
  17. Kim, C.-J. (1991), "Silicon electromechanical microgrippers: Design, fabrication, and testing", Ph.D. Thesis, University of California, Berkeley, CA, USA.
  18. Kim, C.J., Pisano, A.P., Muller, R.S. and Lim, M.G. (1990), "Polysilicon microgripper", Sens. Actuators A Phys., 33(3), 221-227.
  19. Krecinic, F., Duc, T.C., Lau, G. and Sarro, P. (2008), "Finite element modelling and experimental characterization of an electro-thermally actuated silicon-polymer micro gripper", J. Micromech. Microeng., 18(6), 064007. https://doi.org/10.1088/0960-1317/18/6/064007
  20. Kuznetsov, Y.A. (1997), Elements of Applied Bifurcation Theory, Springer-Verlag, New York, NY, USA.
  21. Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4-5), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
  22. Lin, W.H. and Zhao, Y.P. (2008), "Pull-in instability of micro-switch actuators: Model review", Int. J. Nonlinear Sci. Numer. Simul., 9(2), 175-183. https://doi.org/10.1515/IJNSNS.2008.9.2.175
  23. Mehrabadi, R.K. and Mirzaeian, V.R. (2009), "Buckling analyses of rectangular composed of functionally graded materials by the new version of DQ method subjected to non-uniform distributed in-plane loading", J. Solid Mech., 1, 58-72.
  24. Millet, O., Bernardoni, P., Regnier, S., Bidaud, P., Tsitsiris, E., Collard, D. and Buchaillot, L. (2004), "Electrostatic actuated micro gripper using an amplification mechanism", Sens. Actuators A Phys., 114(2-3), 371-378. https://doi.org/10.1016/j.sna.2003.11.004
  25. Mohammadi-Alasti, B., Rezazadeh, G., Borgheei, M., Minaei, S. and Habibifar, R. (2011), "On the mechanical behavior of a functionally graded microbeam subjected to a thermal moment and nonlinear electrostatic pressure", Compos. Struct., 93(6), 1516-1525. https://doi.org/10.1016/j.compstruct.2010.11.013
  26. Nah, S.K. and Zhong, Z.W. (2007), "A microgripper using piezoelectric actuation for micro-object manipulation", Sens. Actuators A Phys., 133(1), 218-224. https://doi.org/10.1016/j.sna.2006.03.014
  27. Neagu, C., Jansen, H., Gardeniers, H. and Elwenspoek, M. (2000), "The electrolysis of water: an actuation principle for MEMS with a big opportunity", Mechatronics, 10(4), 571-581. https://doi.org/10.1016/S0957-4158(99)00066-5
  28. Ng, T.Y., Jiang, T.Y., Li, H., Lam, K.Y. and Reddy, J.N. (2004), "A coupled field study on the nonlinear dynamic characteristics of an electrostatic micropump", J. Sound Vib., 273(4-5), 989-1006. https://doi.org/10.1016/S0022-460X(03)00517-0
  29. Ogawa, E., Ikehashi, T., Saito, T., Yamazaki, H., Masunishi, K., Tomizawa, Y., Ohguro, T., Sugizaki, Y., Toyoshima, Y. and Shibata, H. (2011), "A creep-immune electrostatic actuator for RF-MEMS tunable capacitor", Sensor. Actuator. A: Phys., 169(2), 373-377. https://doi.org/10.1016/j.sna.2011.04.014
  30. Pan, C.S. and Hsu, W. (1997), "An electro-thermally and laterally driven polysilicon microactuator", J. Micromech. Microeng., 7(1), 7. https://doi.org/10.1088/0960-1317/7/1/003
  31. Parate, O. and Gupta, N. (2011), "Material selection for electrostatic microactuators using Ashby approach", Mater. Des., 32(3), 1577-1581. https://doi.org/10.1016/j.matdes.2010.09.012
  32. Park, S. and Gao, X. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng, 16(11), 2355. https://doi.org/10.1088/0960-1317/16/11/015
  33. Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D. and Schulte, K. (2003), "Functionally graded materials for biomedical applications", Mater. Sci. Eng., 362(1-2), 40-60. https://doi.org/10.1016/S0921-5093(03)00580-X
  34. Ramezani, A., Alasty, A. and Akbari, J. (2006), "Influence of van der Waals force on the pull-in parameters of cantilever type nanoscale electrostatic actuators", Microsyst. Technol., 12(12), 1153-1161. https://doi.org/10.1007/s00542-006-0244-6
  35. Rezazadeh, G., Tahmasebi, A. and Zubstov, M. (2006), "Application of piezoelectric layers in electrostatic MEM actuators: Controlling of pull-in voltage", Microsyst. Technol., 12(12), 1163-1170. https://doi.org/10.1007/s00542-006-0245-5
  36. Sadeghian, H., Rezazadeh, G. and Osterberg, P.M. (2007), "Application of the generalized differential quadrature method to the study of pull-In phenomena of MEMS switches", J. Microelectromech. Syst., 16(6), 1334-1340. https://doi.org/10.1109/JMEMS.2007.909237
  37. Sadowski, T., Boniecki, M., Librant, Z. and Nakonieczny, K. (2007), "Theoretical prediction and experimental verification of temperature distribution in FGM cylindrical plates subjected to thermal shock", Int. J. Heat Mass Transfer, 50(21-22), 4461-4467. https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.002
  38. Saeedivahdat, A., Abdolkarimzadeh, F., Feyzi, A., Rezazadeh, G. and Tarverdilo, S. (2010), "Effect of thermal stresses on stability and frequency response of a capacitive microphone", Microelectron. J., 41(12), 865-873. https://doi.org/10.1016/j.mejo.2010.07.013
  39. Sardan, O., Peterson, D.H., Molhave, K., Sigmund, O. and Boggild, P. (2008), "Topology optimized electrothermal polysilicon microgrippers", Microelectron. Eng., 85(5-6), 1096-1099. https://doi.org/10.1016/j.mee.2008.01.049
  40. Shariyat, M. (2009), "Vibration and dynamic buckling control of imperfect hybrid FGM plates with temperature-dependent material properties subjected to thermo-electro-mechanical loading conditions", Compos. Struct., 88(2), 240-252. https://doi.org/10.1016/j.compstruct.2008.04.003
  41. Shi, F., Ramesh, P. and Mukherjee, S. (1995), "Simulation methods for micro-electro-mechanical structures (MEMS) with application to a Microgripper", Compos. Struct., 56(5), 769-783. https://doi.org/10.1016/0045-7949(95)00007-4
  42. Simsek, M. (2009), "Static analysis of a functionally graded beam under a uniformly distributed load by ritz method", Int. J. Eng. Appl. Sci., 1(3), 1-11.
  43. Simsek, M. (2010), "Vibration analysis of a functionally graded beam under a moving mass by using different beam theories", Compos. Struct., 92(4), 904-917. https://doi.org/10.1016/j.compstruct.2009.09.030
  44. Song, M.T., Cao, D.Q. and Zhu, W.D. (2011), "Dynamic analysis of a micro-resonatoer driven by electrostatic combs", Cummun. Nonlinear Sci. Numer. Simulat., 16(8), 3425-3442. https://doi.org/10.1016/j.cnsns.2010.12.004
  45. Taeprasartsit, S. (2011), "A buckling analysis of perfect and imperfect functionally graded columns", Proceedings of the Institution of Mechanical Engineers, Part L: J. Mater. Des. Appl., 226, 16-33.
  46. Talha, M. and Singh, B.N. (2011), "Thermo-mechanical induced vibration characteristics of shear deformable functionally graded ceramic-metal plates using finite element method", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 225(1), 50-56. https://doi.org/10.1243/09544062JMES2115
  47. Volland, B.E., Heerlein, H. and Rangelow, I.W. (2002), "Electrostatically driven microgripper", Microelectron. Eng., 61-62, 1015-1023. https://doi.org/10.1016/S0167-9317(02)00461-6
  48. Volland, B.E., Ivanova, K., Ivanov, T., Sarov, Y., Guliyev, E., Persaud, A., Zollner, J.P., Klett, S., Kostic, I. and Rangelowi, W. (2007), "Duo-action electro thermal micro gripper", Microelectron. Eng., 84(5-8), 1329-1332. https://doi.org/10.1016/j.mee.2007.01.177
  49. Wen-Hui, L. and Ya-Pu, Z. (2003), "Dynamic behaviour of nanoscale electrostatic actuators", Chinese Phys. Lett., 20(11), 2070. https://doi.org/10.1088/0256-307X/20/11/049
  50. Zubir, M.N.M., Shirinzadeh, B. and Tian, Y. (2009), "A new design of piezoelectric driven compliant-based microgripper for micromanipulation", Mech. Mach. Theory, 44(12), 2248-2264. https://doi.org/10.1016/j.mechmachtheory.2009.07.006

Cited by

  1. Finite element and micromechanical modeling for investigating effective material properties of polymer–matrix nanocomposites with microfiber, reinforced by CNT arrays vol.8, pp.3, 2016, https://doi.org/10.1007/s40091-016-0132-y
  2. Vibration analysis of micro composite thin beam based on modified couple stress vol.64, pp.4, 2017, https://doi.org/10.12989/sem.2017.64.4.403
  3. Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-of-plane motion vol.26, pp.6, 2015, https://doi.org/10.12989/scs.2018.26.6.673
  4. Analytical Approximate Solution for Nonlinear Behavior of Cantilever FGM MEMS Beam with Thermal and Size Dependency vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/9637048
  5. Static stability analysis of axially functionally graded tapered micro columns with different boundary conditions vol.33, pp.1, 2019, https://doi.org/10.12989/scs.2019.33.1.133
  6. On bending analysis of perforated microbeams including the microstructure effects vol.76, pp.6, 2020, https://doi.org/10.12989/sem.2020.76.6.765