DOI QR코드

DOI QR Code

Analysis of composite steel-concrete beams using a refined high-order beam theory

  • Lezgy-Nazargah, M. (Department of Civil Engineering, Hakim Sabzevari University) ;
  • Kafi, L. (Department of Civil Engineering, Hakim Sabzevari University)
  • 투고 : 2014.07.02
  • 심사 : 2014.11.24
  • 발행 : 2015.06.25

초록

A finite element model is presented for the analysis of composite steel-concrete beams based on a refined high-order theory. The employed theory satisfies all the kinematic and stress continuity conditions at the layer interfaces and considers effects of the transverse normal stress and transverse flexibility. The global displacement components, described by polynomial or combinations of polynomial and exponential expressions, are superposed on local ones chosen based on the layerwise or discrete-layer concepts. The present finite model does not need the incorporating any shear correction factor. Moreover, in the present $C^1$-continuous finite element model, the number of unknowns is independent of the number of layers. The proposed finite element model is validated by comparing the present results with those obtained from the three-dimensional (3D) finite element analysis. In addition to correctly predicting the distribution of all stress components of the composite steel-concrete beams, the proposed finite element model is computationally economic.

키워드

참고문헌

  1. Barbero, E.J., Reddy, J.N. and Teply, J. (1990), "An accurate determination of stresses in thick laminates using a generalized plate theory", Int. J. Numer. Method. Eng., 29(1), 1-14. https://doi.org/10.1002/nme.1620290103
  2. Beheshti-Aval, S.B. and Lezgy-Nazargah, M. (2012), "A coupled refined high-order global-local theory and finite element model for static electromechanical response of smart multilayered/sandwich beams", Arch. Appl. Mech., 82(12), 1709-1752. https://doi.org/10.1007/s00419-012-0621-9
  3. Beheshti-Aval, S.B. and Lezgy-Nazargah, M. (2013), "Coupled refined layerwise theory for dynamic free and forced response of piezoelectric laminated composite and sandwich beams", Meccanica, 48(6), 1479-1500. https://doi.org/10.1007/s11012-012-9679-2
  4. Beheshti-Aval, S.B., Shahvaghar-Asl, S., Lezgy-Nazargah, M. and Noori, M. (2013), "A finite element model based on coupled refined high-order global-local theory for static analysis of electromechanical embedded shear-mode piezoelectric sandwich composite beams with various widths", Thin-Wall. Struct., 72, 139-163. https://doi.org/10.1016/j.tws.2013.06.001
  5. Berczynski, S. and Wroblewski, T. (2005), "Vibration of steel-concrete composite beams using the Timoshenko beam model", J. Vib. Control, 11(6), 829-848. https://doi.org/10.1177/1077546305054678
  6. Carrera, E. (2000), "An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates", Compos. Struct., 50(2), 183-198. https://doi.org/10.1016/S0263-8223(00)00099-4
  7. Carrera, E. (2001), "Developments, ideas and evaluations based upon Reissner's mixed variational theorem in the modeling of multilayered plates and shells", Appl. Mech. Rev., 54(4), 301-329. https://doi.org/10.1115/1.1385512
  8. Icardi, U. (1998), "Eight-noded zig-zag element for deflection and stress analysis of plates with general lay-up", Compos. Part B, 29(4), 425-441. https://doi.org/10.1016/S1359-8368(97)00040-1
  9. Icardi, U. (2001a), "A three-dimensional zig-zag theory for analysis of thick laminated beams", Compos. Struct., 52(1), 123-135. https://doi.org/10.1016/S0263-8223(00)00189-6
  10. Icardi, U. (2001b), "Higher-order zig-zag model for analysis of thick composite beams with inclusion of transverse normal stress and sublaminates approximations", Compos. Part B, 32(4), 343-354. https://doi.org/10.1016/S1359-8368(01)00016-6
  11. Lezgy-Nazargah, M., Shariyat, M. and Beheshti-Aval, S.B. (2011a), "A refined high-order global-local theory for finite element bending and vibration analyses of the laminated composite beams", Acta Mech., 217(3-4), 219-242. https://doi.org/10.1007/s00707-010-0391-9
  12. Lezgy-Nazargah, M., Beheshti-Aval, S.B. and Shariyat, M. (2011b), "A refined mixed global-local finite element model for bending analysis of multi-layered rectangular composite beams with small widths", Thin-Wall. Struct., 49(2), 351-362. https://doi.org/10.1016/j.tws.2010.09.027
  13. Li, X. and Liu, D. (1997), "Generalized laminate theories based on double superposition hypothesis", Int. J. Numer. Method. Eng., 40(7), 1197-1212. https://doi.org/10.1002/(SICI)1097-0207(19970415)40:7<1197::AID-NME109>3.0.CO;2-B
  14. Li, J., Huo, Q., Li, X., Kong, X. and Wu, W. (2014), "Dynamic stiffness analysis of steel-concrete composite beams", Steel Compos. Struct., Int. J., 16(6), 577-593. https://doi.org/10.12989/scs.2014.16.6.577
  15. Ranzi, G. (2008), "Locking problems in the partial interaction analysis of multi-layered composite beams", Eng. Struct., 30(10), 2900-2911. https://doi.org/10.1016/j.engstruct.2008.04.006
  16. Ranzi, G. and Zona, A. (2007a), "A composite beam model including the shear deformability of the steel component", Eng. Struct., 29(11), 3026-3041. https://doi.org/10.1016/j.engstruct.2007.02.007
  17. Ranzi, G. and Zona, A. (2007b), "A steel-concrete composite beam model with partial interaction including the shear deformability of the steel component", Eng. Struct., 29(11), 3026-3041. https://doi.org/10.1016/j.engstruct.2007.02.007
  18. Ranzi, G., Dall'Asta, A., Ragni, L. and Zona, A. (2010), "A geometric nonlinear model for composite beams with partial interaction", Eng. Struct., 32(5), 1384-1396. https://doi.org/10.1016/j.engstruct.2010.01.017
  19. Reddy, J.N. (1987), "A generalization of two-dimensional theories of laminated composite plates", Commun. Appl. Numer. Method., 3(3), 173-180. https://doi.org/10.1002/cnm.1630030303
  20. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, FL, USA.
  21. Reddy, J.N., Barbero, E.J. and Teply, J. (1989), "A plate bending element based on a generalized laminate plate theory", Int. J. Numer. Method. Eng., 28(10), 2275-2292. https://doi.org/10.1002/nme.1620281006
  22. Ren, J.G. (1986), "Bending theory of laminated plates", Compos. Sci. Technol., 27(3), 225-248. https://doi.org/10.1016/0266-3538(86)90033-3
  23. Ren, J.G. and Owen, D.R.J. (1989), "Vibration and buckling of laminated plates", Int. J. Solid. Struct., 25(2),95-106. https://doi.org/10.1016/0020-7683(89)90001-2
  24. Robbins Jr., D.H. and Reddy, J.N. (1993), "Modeling of thick composites using a layerwise laminate theory", Int. J. Numer. Method. Eng., 36(4), 655-677. https://doi.org/10.1002/nme.1620360407
  25. Schnabl, S., Saje, M., Turk, G. and Planinc, I. (2007), "Locking-free two-layer Timoshenko beam element with interlayer slip", Finite Elem. Anal. Des., 43(9), 705-714. https://doi.org/10.1016/j.finel.2007.03.002
  26. Spacone, E. and El-Tawil, S. (2004), "Nonlinear analysis of steel-concrete composite structures: State-ofthe-art", J. Struct. Eng., 130(2), 159-168. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(159)
  27. Whitney, J.M. (1969), "The effects of transverse shear deformation on the bending of laminated plates", J. Compos. Mater., 3(3), 534-547. https://doi.org/10.1177/002199836900300316
  28. Whitney, J.M. (1973), "Shear correction factors for orthotropic laminates under static load", J. Appl. Mech. ASME, 40(1), 302-304. https://doi.org/10.1115/1.3422950
  29. Xu, R.Q. and Wu, Y.F. (2007a), "Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory", Int. J. Mech. Sci., 49(10), 1139-1155. https://doi.org/10.1016/j.ijmecsci.2007.02.006
  30. Xu, R.Q. and Wu, Y.F. (2007b), "Two-dimensional analytical solutions of simply supported composite beams with interlayer slips", Int. J. Solids Struct., 44(1), 165-175. https://doi.org/10.1016/j.ijsolstr.2006.04.027
  31. Zona, A. and Ranzi, G. (2011), "Finite element models for non-linear analysis of steel concrete composite beams with partial interaction in combined bending and shear", Finite Elem. Anal. Des., 47(2), 98-118. https://doi.org/10.1016/j.finel.2010.09.006

피인용 문헌

  1. Assessment of refined high-order global–local theory for progressive failure analysis of laminated composite beams vol.228, pp.5, 2017, https://doi.org/10.1007/s00707-017-1807-6
  2. Flexural natural vibration characteristics of composite beam considering shear deformation and interface slip vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.1023
  3. Flexural stiffness of steel-concrete composite beam under positive moment vol.20, pp.6, 2016, https://doi.org/10.12989/scs.2016.20.6.1369
  4. A generalized layered global-local beam theory for elasto-plastic analysis of thin-walled members vol.115, 2017, https://doi.org/10.1016/j.tws.2017.02.004
  5. An efficient materially nonlinear finite element model for reinforced concrete beams based on layered global-local kinematics 2018, https://doi.org/10.1007/s00707-017-2081-3
  6. Effect of layer length on deflection in sandwich beams vol.9, pp.3, 2017, https://doi.org/10.1007/s40091-017-0159-8
  7. A sinus shear deformation model for static analysis of composite steel-concrete beams and twin-girder decks including shear lag and interfacial slip effects vol.134, pp.None, 2019, https://doi.org/10.1016/j.tws.2018.10.001
  8. Optimization of steel-concrete composite beams considering cost and environmental impact vol.34, pp.3, 2015, https://doi.org/10.12989/scs.2020.34.3.409
  9. Evaluation of mechanical properties of fiber reinforced composites filled with hollow spheres: A micromechanics approach vol.55, pp.3, 2015, https://doi.org/10.1177/0021998320949649
  10. Effective width of steel-concrete composite beams under negative moments in service stages vol.38, pp.4, 2015, https://doi.org/10.12989/scs.2021.38.4.415