References
- Barbero, E.J., Reddy, J.N. and Teply, J. (1990), "An accurate determination of stresses in thick laminates using a generalized plate theory", Int. J. Numer. Method. Eng., 29(1), 1-14. https://doi.org/10.1002/nme.1620290103
- Beheshti-Aval, S.B. and Lezgy-Nazargah, M. (2012), "A coupled refined high-order global-local theory and finite element model for static electromechanical response of smart multilayered/sandwich beams", Arch. Appl. Mech., 82(12), 1709-1752. https://doi.org/10.1007/s00419-012-0621-9
- Beheshti-Aval, S.B. and Lezgy-Nazargah, M. (2013), "Coupled refined layerwise theory for dynamic free and forced response of piezoelectric laminated composite and sandwich beams", Meccanica, 48(6), 1479-1500. https://doi.org/10.1007/s11012-012-9679-2
- Beheshti-Aval, S.B., Shahvaghar-Asl, S., Lezgy-Nazargah, M. and Noori, M. (2013), "A finite element model based on coupled refined high-order global-local theory for static analysis of electromechanical embedded shear-mode piezoelectric sandwich composite beams with various widths", Thin-Wall. Struct., 72, 139-163. https://doi.org/10.1016/j.tws.2013.06.001
- Berczynski, S. and Wroblewski, T. (2005), "Vibration of steel-concrete composite beams using the Timoshenko beam model", J. Vib. Control, 11(6), 829-848. https://doi.org/10.1177/1077546305054678
- Carrera, E. (2000), "An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates", Compos. Struct., 50(2), 183-198. https://doi.org/10.1016/S0263-8223(00)00099-4
- Carrera, E. (2001), "Developments, ideas and evaluations based upon Reissner's mixed variational theorem in the modeling of multilayered plates and shells", Appl. Mech. Rev., 54(4), 301-329. https://doi.org/10.1115/1.1385512
- Icardi, U. (1998), "Eight-noded zig-zag element for deflection and stress analysis of plates with general lay-up", Compos. Part B, 29(4), 425-441. https://doi.org/10.1016/S1359-8368(97)00040-1
- Icardi, U. (2001a), "A three-dimensional zig-zag theory for analysis of thick laminated beams", Compos. Struct., 52(1), 123-135. https://doi.org/10.1016/S0263-8223(00)00189-6
- Icardi, U. (2001b), "Higher-order zig-zag model for analysis of thick composite beams with inclusion of transverse normal stress and sublaminates approximations", Compos. Part B, 32(4), 343-354. https://doi.org/10.1016/S1359-8368(01)00016-6
- Lezgy-Nazargah, M., Shariyat, M. and Beheshti-Aval, S.B. (2011a), "A refined high-order global-local theory for finite element bending and vibration analyses of the laminated composite beams", Acta Mech., 217(3-4), 219-242. https://doi.org/10.1007/s00707-010-0391-9
- Lezgy-Nazargah, M., Beheshti-Aval, S.B. and Shariyat, M. (2011b), "A refined mixed global-local finite element model for bending analysis of multi-layered rectangular composite beams with small widths", Thin-Wall. Struct., 49(2), 351-362. https://doi.org/10.1016/j.tws.2010.09.027
- Li, X. and Liu, D. (1997), "Generalized laminate theories based on double superposition hypothesis", Int. J. Numer. Method. Eng., 40(7), 1197-1212. https://doi.org/10.1002/(SICI)1097-0207(19970415)40:7<1197::AID-NME109>3.0.CO;2-B
- Li, J., Huo, Q., Li, X., Kong, X. and Wu, W. (2014), "Dynamic stiffness analysis of steel-concrete composite beams", Steel Compos. Struct., Int. J., 16(6), 577-593. https://doi.org/10.12989/scs.2014.16.6.577
- Ranzi, G. (2008), "Locking problems in the partial interaction analysis of multi-layered composite beams", Eng. Struct., 30(10), 2900-2911. https://doi.org/10.1016/j.engstruct.2008.04.006
- Ranzi, G. and Zona, A. (2007a), "A composite beam model including the shear deformability of the steel component", Eng. Struct., 29(11), 3026-3041. https://doi.org/10.1016/j.engstruct.2007.02.007
- Ranzi, G. and Zona, A. (2007b), "A steel-concrete composite beam model with partial interaction including the shear deformability of the steel component", Eng. Struct., 29(11), 3026-3041. https://doi.org/10.1016/j.engstruct.2007.02.007
- Ranzi, G., Dall'Asta, A., Ragni, L. and Zona, A. (2010), "A geometric nonlinear model for composite beams with partial interaction", Eng. Struct., 32(5), 1384-1396. https://doi.org/10.1016/j.engstruct.2010.01.017
- Reddy, J.N. (1987), "A generalization of two-dimensional theories of laminated composite plates", Commun. Appl. Numer. Method., 3(3), 173-180. https://doi.org/10.1002/cnm.1630030303
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, FL, USA.
- Reddy, J.N., Barbero, E.J. and Teply, J. (1989), "A plate bending element based on a generalized laminate plate theory", Int. J. Numer. Method. Eng., 28(10), 2275-2292. https://doi.org/10.1002/nme.1620281006
- Ren, J.G. (1986), "Bending theory of laminated plates", Compos. Sci. Technol., 27(3), 225-248. https://doi.org/10.1016/0266-3538(86)90033-3
- Ren, J.G. and Owen, D.R.J. (1989), "Vibration and buckling of laminated plates", Int. J. Solid. Struct., 25(2),95-106. https://doi.org/10.1016/0020-7683(89)90001-2
- Robbins Jr., D.H. and Reddy, J.N. (1993), "Modeling of thick composites using a layerwise laminate theory", Int. J. Numer. Method. Eng., 36(4), 655-677. https://doi.org/10.1002/nme.1620360407
- Schnabl, S., Saje, M., Turk, G. and Planinc, I. (2007), "Locking-free two-layer Timoshenko beam element with interlayer slip", Finite Elem. Anal. Des., 43(9), 705-714. https://doi.org/10.1016/j.finel.2007.03.002
- Spacone, E. and El-Tawil, S. (2004), "Nonlinear analysis of steel-concrete composite structures: State-ofthe-art", J. Struct. Eng., 130(2), 159-168. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(159)
- Whitney, J.M. (1969), "The effects of transverse shear deformation on the bending of laminated plates", J. Compos. Mater., 3(3), 534-547. https://doi.org/10.1177/002199836900300316
- Whitney, J.M. (1973), "Shear correction factors for orthotropic laminates under static load", J. Appl. Mech. ASME, 40(1), 302-304. https://doi.org/10.1115/1.3422950
- Xu, R.Q. and Wu, Y.F. (2007a), "Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko's beam theory", Int. J. Mech. Sci., 49(10), 1139-1155. https://doi.org/10.1016/j.ijmecsci.2007.02.006
- Xu, R.Q. and Wu, Y.F. (2007b), "Two-dimensional analytical solutions of simply supported composite beams with interlayer slips", Int. J. Solids Struct., 44(1), 165-175. https://doi.org/10.1016/j.ijsolstr.2006.04.027
- Zona, A. and Ranzi, G. (2011), "Finite element models for non-linear analysis of steel concrete composite beams with partial interaction in combined bending and shear", Finite Elem. Anal. Des., 47(2), 98-118. https://doi.org/10.1016/j.finel.2010.09.006
Cited by
- Assessment of refined high-order global–local theory for progressive failure analysis of laminated composite beams vol.228, pp.5, 2017, https://doi.org/10.1007/s00707-017-1807-6
- Flexural natural vibration characteristics of composite beam considering shear deformation and interface slip vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.1023
- Flexural stiffness of steel-concrete composite beam under positive moment vol.20, pp.6, 2016, https://doi.org/10.12989/scs.2016.20.6.1369
- A generalized layered global-local beam theory for elasto-plastic analysis of thin-walled members vol.115, 2017, https://doi.org/10.1016/j.tws.2017.02.004
- An efficient materially nonlinear finite element model for reinforced concrete beams based on layered global-local kinematics 2018, https://doi.org/10.1007/s00707-017-2081-3
- Effect of layer length on deflection in sandwich beams vol.9, pp.3, 2017, https://doi.org/10.1007/s40091-017-0159-8
- A sinus shear deformation model for static analysis of composite steel-concrete beams and twin-girder decks including shear lag and interfacial slip effects vol.134, pp.None, 2019, https://doi.org/10.1016/j.tws.2018.10.001
- Optimization of steel-concrete composite beams considering cost and environmental impact vol.34, pp.3, 2015, https://doi.org/10.12989/scs.2020.34.3.409
- Evaluation of mechanical properties of fiber reinforced composites filled with hollow spheres: A micromechanics approach vol.55, pp.3, 2015, https://doi.org/10.1177/0021998320949649
- Effective width of steel-concrete composite beams under negative moments in service stages vol.38, pp.4, 2015, https://doi.org/10.12989/scs.2021.38.4.415