DOI QR코드

DOI QR Code

African Indigenous Cattle: Unique Genetic Resources in a Rapidly Changing World

  • 발행 : 2015.07.01

초록

At least 150 indigenous African cattle breeds have been named, but the majority of African cattle populations remain largely uncharacterized. As cattle breeds and populations in Africa adapted to various local environmental conditions, they acquired unique features. We know now that the history of African cattle was particularly complex and while several of its episodes remain debated, there is no doubt that African cattle population evolved dramatically over time. Today, we find a mosaic of genetically diverse population from the purest Bos taurus to the nearly pure Bos indicus. African cattle are now found all across the continent, with the exception of the Sahara and the river Congo basin. They are found on the rift valley highlands as well as below sea level in the Afar depression. These unique livestock genetic resources are in danger to disappear rapidly following uncontrolled crossbreeding and breed replacements with exotic breeds. Breeding improvement programs of African indigenous livestock remain too few while paradoxically the demand of livestock products is continually increasing. Many African indigenous breeds are endangered now, and their unique adaptive traits may be lost forever. This paper reviews the unique known characteristics of indigenous African cattle populations while describing the opportunities, the necessity and urgency to understand and utilize these resources to respond to the needs of the people of the continent and to the benefit of African farmers.

키워드

참고문헌

  1. Ajmone-Marsan, P., J. F. Garcia, and J. A. Lenstra. 2010. On the origin of cattle: How aurochs became cattle and colonized the world. Evol. Anthropol. Issues, News, Reviews 19:148-157. https://doi.org/10.1002/evan.20267
  2. Andersson, L. and M. Georges. 2004. Domestic-animal genomics: Deciphering the genetics of complex traits. Nat. Rev. Genet. 5:202-212. https://doi.org/10.1038/nrg1294
  3. Ashwell, M., D. Heyen, T. Sonstegard, C. Van Tassell, Y. Da, P. VanRaden, M. Ron, J. Weller, and H. Lewin. 2004. Detection of quantitative trait loci affecting milk production, health, and reproductive traits in Holstein cattle. J. Dairy Sci. 87:468-475. https://doi.org/10.3168/jds.S0022-0302(04)73186-0
  4. Asselbergs, M., F. Jongejan, A. Langa, L. Neves, and S. Afonso. 1993. Antibodies toCowdria ruminantium in Mozambican goats and cattle detected by immunofluorescence using endothelial cell culture antigen. Trop. Anim. Health Prod. 25:144-150. https://doi.org/10.1007/BF02236232
  5. Blench, R. M. and K. C. MacDonald. 2006. The origins and development of African livestock: archaeology, genetics, linguistics and ethnography. Routledge, London, UK.
  6. Bonfiglio, S., C. Ginja, A. De Gaetano, A. Achilli, A. Olivieri, L. Colli, K. Tesfaye, S. H. Agha, L. T. Gama, F. Cattanaro, M. C. T. Penedo, P. Ajmone-Marsan, A. Torroni, and L. Ferretti. 2012. Origin and spread of Bos taurus: New clues from mitochondrial genomes belonging to haplogroup T1. PLoS ONE 7(6):e38601. https://doi.org/10.1371/journal.pone.0038601
  7. Bradley, D. G., D. E. MacHugh, R. T. Loftus, R. S. Sow, C. H. Hoste, and E. P. Cunningham. 1994. Zebu-taurine variation in Y chromosomal DNA: a sensitive assay for genetic introgression in West African trypanotolerant cattle populations. Anim. Genet. 25:7-12.
  8. Buffum, B. C. 1909. Arid Agriculture: A Hand-book for the Western Farmer and Stockman. Self published, Worland, WY, USA.
  9. Canavez, F. C., D. D. Luche, P. Stothard, K. R. M. Leite, J. M. Sousa-Canavez, G. Plastow, J. Meidanis, M. A. Souza, P. Feijao, S. S. Moore, and L. H. Camara-Lopes. 2012. Genome sequence and assembly of Bos indicus. J. Hered. doi: 10.1093/jhered/esr153.
  10. Chimpanzee Sequencing and Analysis Consortium. 2005. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69-87. https://doi.org/10.1038/nature04072
  11. Collier, P. and J. W. Gunning. 1999. Explaining African economic performance. J. Econ. Lit. 37:64-111. https://doi.org/10.1257/jel.37.1.64
  12. Crick, F. 1970. Central dogma of molecular biology. Nature 227:561-563. https://doi.org/10.1038/227561a0
  13. DAGRIS. 2007. Domestic Animal Genetic Resources Information System (DAGRIS). (eds S. Kemp, Y. Mamo, B. Asrat and T. Dessie). International Livestock Research Institute, Addis Ababa, Ethiopia.
  14. Davey, J. W., P. A. Hohenlohe, P. D. Etter, J. Q. Boone, J. M. Catchen, and M. L. Blaxter. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12:499-510. https://doi.org/10.1038/nrg3012
  15. De Roos, A. P. W., B. J. Hayes, R. J. Spelman, and M. E. Goddard. 2008. Linkage disequilibrium and persistence of phase in Holstein-Friesian, Jersey and Angus cattle. Genetics 179:1503-1512. https://doi.org/10.1534/genetics.107.084301
  16. Decker, J. E., S. D. McKay, M. M. Rolf, J. Kim, A. M. Alcala, T. S. Sonstegard, O. Hanotte, A. Gotherstrom, C. M. Seabury, and L. Praharani et al. 2014. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet 10(3):e1004254. https://doi.org/10.1371/journal.pgen.1004254
  17. Edwards, C. J., R. Bollongino, A. Scheu, A. Chamberlain, A. Tresset, J.-D. Vigne, J. F. Baird, G. Larson, S. Y. Ho, and T. H. Heupink et al. 2007. Mitochondrial DNA analysis shows a Near Eastern Neolithic origin for domestic cattle and no indication of domestication of European aurochs. Proceedings of the Royal Society of London B: Biological Sciences 274:1377-1385. https://doi.org/10.1098/rspb.2007.0020
  18. Epstein, H. and I. L. Mason. 1971. Origin of the Domestic Animals of Africa. Holmes & Meier, NY, USA.
  19. Falconer, D. S. 1960. Introduction to Quantitative Genetics DS Falconer. Longman, London, England.
  20. Felius, M. 1995. Cattle Breeds: An Encyclopedia. Misset, Doetinchem, Netherlands.
  21. Flint, A. P. F. and J. A. Woolliams. 2008. Precision animal breeding. Philosophical Transactions of the Royal Society B: Biological Sciences 363:573-590. https://doi.org/10.1098/rstb.2007.2171
  22. Freeman, A., D. G. Bradley, S. Nagda, J. P. Gibson, and O. Hanotte. 2006. Combination of multiple microsatellite data sets to investigate genetic diversity and admixture of domestic cattle. Anim. Genet. 37:1-9.
  23. Gautier, M., L. Flori, A. Riebler, F. Jaffrezic, ,D. Laloe, I. Gut, and K. Moazami-Goudarzi and J.-L. Foulley. 2009. A whole gneome Bayesian scan for adaptive genetic divergence in West African cattle. BMC Genomics. 10:550. doi:10.1186/1471-2164-10-550.
  24. Gautier, M., D. Laloe, and K. Moazami-Goudarzi. 2010. Insights into the genetic history of French cattle from dense SNP data on 47 worldwide breeds. PLoS One 5(9):e13038. https://doi.org/10.1371/journal.pone.0013038
  25. Gebremedhin, B., D. Hoekstra, and S. Jemaneh. 2007. Heading towards commercialization? The case of live animal marketing in Ethiopia. International Livestock Research Institute, Nairobi, Kenya.
  26. Glazier, A. M., J. H. Nadeau, and T. J. Aitman. 2002. Finding genes that underlie complex traits. Science 298:2345-2349. https://doi.org/10.1126/science.1076641
  27. Goddard, M. E. and B. J. Hayes. 2009. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat. Rev. Genet. 10:381-391. https://doi.org/10.1038/nrg2575
  28. Habier, D., R. L. Fernando, and J. C. M. Dekkers. 2007. The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389-2397.
  29. Hanotte, O., D. G. Bradley, J. W. Ochieng, Y. Verjee, E. W. Hill, and J. E. O. Rege. 2002. African pastoralism: genetic imprints of origins and migrations. Science 296:336-339. https://doi.org/10.1126/science.1069878
  30. Hanotte, O., T. Dessie, and S. Kemp. 2010. Time to tap Africa's livestock genomes. Science (Washington) 328:1640-1641. https://doi.org/10.1126/science.1186254
  31. Hanotte, O., M. Okomo, Y. Verjee, J. Rege, and A. Teale. 1997. A polymorphic Y chromosome microsatellite locus in cattle. Anim. Genet. 28:318-319.
  32. Hanotte, O., Y. Ronin, M. Agaba, P. Nilsson, A. Gelhaus, R. Horstmann, Y. Sugimoto, S. Kemp, J. Gibson, and A. Korol. 2003. Mapping of quantitative trait loci controlling trypanotolerance in a cross of tolerant West African N'Dama and susceptible East African Boran cattle. Proc. Natl. Acad. Sci. 100:7443-7448. https://doi.org/10.1073/pnas.1232392100
  33. Hanotte, O., C. L. Tawah, D. G. Bradley, M. Okomo, Y. Verjee, J. Ochieng, and J. Rege. 2000. Geographic distribution and frequency of a taurine Bos taurus and an indicine Bos indicus Y specific allele amongst sub-Saharan African cattle breeds. Mol. Ecol. 9:387-396. https://doi.org/10.1046/j.1365-294x.2000.00858.x
  34. Hansen, P. J. 2004. Physiological and cellular adaptations of zebu cattle to thermal stress. Anim. Reprod. Sci. 82:349-360.
  35. Hayes, B. J., H. A. Lewin, and M. E. Goddard. 2013. The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends Genet. 29:206-214. https://doi.org/10.1016/j.tig.2012.11.009
  36. Hiendleder, S., H. Lewalski, and A. Janke. 2008. Complete mitochondrial genomes of Bos taurus and Bos indicus provide new insights into intra-species variation, taxonomy and domestication. Cytogenet. Genome Res. 120:150-156. https://doi.org/10.1159/000118756
  37. Houghton, J. T. and B. A. Callander. 1992. Climate change 1992: the supplementary report to the IPCC scientific assessment. Cambridge University Press, Cambridge, UK.
  38. Hu, Z.-L., C. A. Park, X.-L. Wu, and J. M. Reecy. 2013. Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucl. Acids Res. 41:D871-D879. https://doi.org/10.1093/nar/gks1150
  39. ILRI. 2006. Safeguarding livestock diversity: The time is now. Annual Report 2006. International Livestock Research Institute, Nairobi, Kenya.
  40. Khatkar, M. S., P. C. Thomson, I. Tammen, and H. W. Raadsma. 2004. Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet. Sel. Evol. 36:163-190. https://doi.org/10.1186/1297-9686-36-2-163
  41. Kim, J.-J., F. Farnir, J. Savell, and J. F. Taylor. 2003. Detection of quantitative trait loci for growth and beef carcass fatness traits in a cross between Bos taurus (Angus) and Bos indicus (Brahman) cattle. J. Anim. Sci. 81:1933-1942. https://doi.org/10.2527/2003.8181933x
  42. Kugonza, D. R., M. Nabasirye, D. Mpairwe, O. Hanotte, and A. Okeyo. 2011. Productivity and morphology of Ankole cattle in three livestock production systems in Uganda. Anim. Genet. Res. 48:13-22. https://doi.org/10.1017/S2078633611000038
  43. Lander, E. and L. Kruglyak. 1995. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet. 11:241-247. https://doi.org/10.1038/ng1195-241
  44. Lemecha, H., W. Mulatu, I. Hussein, E. Rege, T. Tekle, S. Abdicho and W. Ayalew. 2006. Response of four indigenous cattle breeds to natural tsetse and trypanosomosis challenge in the Ghibe valley of Ethiopia. Vet. Parasitol. 141:165-176. https://doi.org/10.1016/j.vetpar.2006.04.035
  45. Linseele, V. 2004. Size and size change of the African aurochs. J. Afr. Archaeol. 2:165-185. https://doi.org/10.3213/1612-1651-10026
  46. Loftus, R., O. Ertugrul, A. H. Harba, M. A. A. El-Barody, D. E. MacHugh, S. D. E. Park, and D. G. Bradley. 1999. A microsatellite survey of cattle from a centre of origin: the Near East. Mol. Ecol. 8:2015-2022. https://doi.org/10.1046/j.1365-294x.1999.00805.x
  47. Loftus, R. T., D. E. Machugh, D. G. Bradley, P. M. Sharp, and P. Cunningham. 1994. Evidence for two independent domestications of cattle. Proc. Natl. Acad. Sci. 91:2757-2761. https://doi.org/10.1073/pnas.91.7.2757
  48. MacHugh, D. E., M. D. Shriver, R. T. Loftus, P. Cunningham, and D. G. Bradley. 1997. Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus). Genetics 146:1071-1086.
  49. Makina, S. O., F. C. Muchadeyi, E. van Marle-KOster, M. D. MacNeil, and A. Maiwashe. 2014. Genetic diversity and population structure among six cattle breeds in South Africa using a whole genome SNP panel. Front. Genet. 5:533. Front Genet. 2014; 5: 333.doi: 10.3389/fgene.2014.00333.
  50. Manolio, T. A., F. S. Collins, N. J. Cox, D. B. Goldstein, L. A. Hindorff, D. J. Hunter, M. I. McCarthy, E. M. Ramos, L. R. Cardon, and A. Chakravarti et al. 2009. Finding the missing heritability of complex diseases. Nature 461:747-753. https://doi.org/10.1038/nature08494
  51. Mardis, E. R. 2008. The impact of next-generation sequencing technology on genetics. Trends Genet. 24:133-141. https://doi.org/10.1016/j.tig.2007.12.007
  52. Marshall, F. and E. Hildebrand. 2002. Cattle before crops: the beginnings of food production in Africa. J. World Prehist. 16:99-143. https://doi.org/10.1023/A:1019954903395
  53. Mattioli, R. C., V. S. Pandey, M. Murray, and J. L. Fitzpatrick. 2000. Immunogenetic influences on tick resistance in African cattle with particular reference to trypanotolerant N'Dama (Bos taurus) and trypanosusceptible Gobra zebu (Bos indicus) cattle. Acta Trop. 75:263-277. https://doi.org/10.1016/S0001-706X(00)00063-2
  54. Mbole-Kariuki, M. N., T. Sonstegard, A. Orth, S. M. Thumbi, B. M. de C. Bronsvoort, H. Kiara, P. Toye, I. Conradie, A. Jennings, K. Coetzer, M. J. J. Woolhouse, O. Hanotte, M. Tapio. 2014. Genome-wide analysis reveals the ancient and recent admixture history of East African Shorthorn Zebu from Western Kenya. Heredity 113:297-305. https://doi.org/10.1038/hdy.2014.31
  55. Murray, M., W. Morrison, and D. Whitelaw. 1982. Host susceptibility to African trypanosomiasis: Trypanotolerance. Adv. Parasitol. 21:1-68. https://doi.org/10.1016/S0065-308X(08)60274-2
  56. Murray, M., J. C. M. Trail, C. E. Davis, and S. J. Black. 1984. Genetic resistance to African trypanosomiasis. J. Infect. Dis. 149:311-319. https://doi.org/10.1093/infdis/149.3.311
  57. Murray, G. G. R., M. E. J. Woolhouse, M. Tapio, M. N. Mbole-Kariuki, T. S. Sonstegard, S. M. Thumbi, A. E. Jennings, I. C. van Wyk, M. Chase-Topping, and H. Kiara et al. 2013. Genetic susceptibility to infectious disease in East African Shorthorn Zebu: A genome-wide analysis of the effect of heterozygosity and exotic introgression. BMC Evol. Biol. 13:246. https://doi.org/10.1186/1471-2148-13-246
  58. Musa, L. M. A., M. A. Ahmed, K. J. Peters, B. Zumbach, and K. E. A. Gubartalla. 2005. The reproductive and milk performance merit of Butana cattle in Sudan. Arch. Tierz. 48:445-459.
  59. Nardone, A., B. Ronchi, N. Lacetera, M. S. Ranieri, and U. Bernabucci. 2010. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 130:57-69. https://doi.org/10.1016/j.livsci.2010.02.011
  60. Newman, T. L., E. Tuzun, V. A. Morrison, K. E. Hayden, M. Ventura, S. D. McGrath, M. Rocchi, and E. E. Eichler. 2005. A genome-wide survey of structural variation between human and chimpanzee. Genome Res. 15:1344-1356. https://doi.org/10.1101/gr.4338005
  61. Ndumu, D. B., R. Baumung, O. Hanotte, M. Wurzinger, M. A. Okeyo, H. Jianlin, H. Kibogo, and J. Solkner. 2008. Genetic and morphological characterisation of the Ankole Longhorn cattle in the African Great Lakes region. Genet. Sel. Evol. 40:467-490.
  62. Njogu, A., R. Dolan, A. Wilson, and P. Sayer. 1985. Trypanotolerance in East African Orma Boran cattle. Vet. Rec. 117:632-636. https://doi.org/10.1136/vr.117.24.632
  63. Okello, S. and E. N. Sabiiti. 2006. Milk production of indigenous Ankole cattle in Uganda as influenced by seasonal variations in temperature, rainfall and feed quality. Makerere Univ. Res. J. 1:73-92.
  64. Otten, D. and H. F. Van den Weghe. 2011. The Sustainability of Intensive Livestock Areas (ILAS): Network system and conflict potential from the perspective of animal farmers. Int. J. Food Syst. Dyn. 2:36-51.
  65. Payne, W. 1964. The origin of domestic cattle in Africa. Emp. J. Exp. Agric. 32:97-113.
  66. Piper, E. K., N. N. Jonsson, C. Gondro, A. E. Lew-Tabor, P. Moolhuijzen, M. E. Vance, and L. A. Jackson. 2009. Immunological profiles of Bos taurus and Bos indicus cattle infested with the cattle tick, Rhipicephalus (Boophilus) microplus. Clin. Vaccine Immunol. 16:1074-1086. https://doi.org/10.1128/CVI.00157-09
  67. Porto-Neto, L. R., T. S. Sonstegard, G. E. Liu, D. M. Bickhart, M. V. Da Silva, M. A. Machado, Y. T. Utsunomiya, J. F. Garcia, C. Gondro, and C. P. Van Tassell. 2013. Genomic divergence of zebu and taurine cattle identified through high-density SNP genotyping. BMC Genomics 14:876. https://doi.org/10.1186/1471-2164-14-876
  68. Pryce, J. E., M. D. Royal, P. C. Garnsworthy, and I. L. Mao. 2004. Fertility in the high-producing dairy cow. Livest. Prod. Sci. 86:125-135. https://doi.org/10.1016/S0301-6226(03)00145-3
  69. Pullan, N. B. and R. J. Grindle. 1980. Productivity of white Fulani cattle on the Jos plateau, Nigeria. IV. Economic factors. Trop. Anim. Health Prod. 12:161-170. https://doi.org/10.1007/BF02242648
  70. Rege, J. E. O. 1999. The state of African cattle genetic resources I. Classification framework and identification of threatened and extinct breeds. Anim. Genet. Res. Inf. 25:1-25. https://doi.org/10.1017/S1014233900003448
  71. Rege, J. E. O. and C. L. Tawah. 1999. The state of African cattle genetic resources II. Geographical distribution, characteristics and uses of present-day breeds and strains. Anim. Genet. Res. Inf. 26:1-25. https://doi.org/10.1017/S1014233900001152
  72. Reist-Marti, S. B., H. Simianer, J. Gibson, O. Hanotte, and J. E. O. Rege. 2003. Weitzman's approach and conservation of breed diversity: An application to African cattle breeds. Conserv. Biol. 17:1299-1311. https://doi.org/10.1046/j.1523-1739.2003.01587.x
  73. Renaudeau, D., A. Collin, S. Yahav, V. De Basilio, J. L. Gourdine, and R. J. Collier. 2012. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 6:707-728. https://doi.org/10.1017/S1751731111002448
  74. Roberts, C. J. and A. R. Gray. 1973. Studies on trypanosomeresistant cattle. II. The effect of trypanosomiasis on N'Dama, Muturu and Zebu cattle. Trop. Anim. Health Prod. 5:220-233. https://doi.org/10.1007/BF02240423
  75. Ruttledge, W. 1928. Tsetse-fly (Glossina morsitans) in the Koalib Hills, Nuba Mountains Province, Sudan. Bull. Entomol. Res. 19:309-316. https://doi.org/10.1017/S0007485300020642
  76. Schenkel, F. S., S. P. Miller, Z. Jiang, I. B. Mandell, X. Ye, H. Li, and J. W. Wilton. 2006. Association of a single nucleotide polymorphism in the calpastatin gene with carcass and meat quality traits of beef cattle. J. Anim. Sci. 84:291-299. https://doi.org/10.2527/2006.842291x
  77. Scholtz, M. M. and A. Theunissen. 2010. The use of indigenous cattle in terminal cross-breeding to improve beef cattle production in Sub-Saharan Africa. Anim. Genet. Res. 46:33-39. https://doi.org/10.1017/S2078633610000676
  78. Shendure, J. and H. Ji. 2008. Next-generation DNA sequencing. Nat. Biotechnol. 26:1135-1145. https://doi.org/10.1038/nbt1486
  79. Stock, F. and D. Gifford-Gonzalez. 2013. Genetics and African cattle domestication. Afr. Archaeol. Rev. 30:51-72. https://doi.org/10.1007/s10437-013-9131-6
  80. Sutter, N. B., M. A. Eberle, H. G. Parker, B. J. Pullar, E. F. Kirkness, L. Kruglyak, and E. A. Ostrander. 2004. Extensive and breed-specific linkage disequilibrium in Canis familiaris. Genome Res. 14:2388-2396. https://doi.org/10.1101/gr.3147604
  81. Terefe, E., A. Haile, W. Mulatu, T. Dessie, and O. Mwai. 2015. Phenotypic characteristics and trypanosome prevalence of Mursi cattle breed in the Bodi and Mursi districts of South Omo Zone, southwest Ethiopia. Trop. Anim. Health Prod. 47:485-493. https://doi.org/10.1007/s11250-014-0746-7
  82. Thomas, A. S. 1943. The vegetation of the Karamoja district, Uganda: An illustration of biological factors in tropical ecology. J. Ecol. 31:149-177. https://doi.org/10.2307/2256546
  83. Troy, C. S., D. E. MacHugh, J. F. Bailey, D. A. Magee, R. T. Loftus, P. Cunningham, A. T. Chamberlain, B. C. Sykes, and D. G. Bradley. 2001. Genetic evidence for Near-Eastern origins of European cattle. Nature 410:1088-1091. https://doi.org/10.1038/35074088
  84. Wendorf, F. and R. Schild. 1994. Are the early Holocene cattle in the Eastern Sahara domestic or wild? Evol. Anthropol. Issues, News, Reviews 3:118-128.
  85. Zajc, I., C. S. Mellersh, and J. Sampson. 1997. Variability of canine microsatellites within and between different dog breeds. Mamm. Genome 8:182-185. https://doi.org/10.1007/s003359900386

피인용 문헌

  1. The Prediction of the Expected Current Selection Coefficient of Single Nucleotide Polymorphism Associated with Holstein Milk Yield, Fat and Protein Contents vol.29, pp.1, 2016, https://doi.org/10.5713/ajas.15.0476
  2. Rare phenotypes in domestic animals: unique resources for multiple applications vol.47, pp.2, 2016, https://doi.org/10.1111/age.12393
  3. Tropically adapted cattle of Africa: perspectives on potential role of copy number variations vol.47, pp.2, 2016, https://doi.org/10.1111/age.12391
  4. Comprehensive identification of sexually dimorphic genes in diverse cattle tissues using RNA-seq vol.17, pp.1, 2016, https://doi.org/10.1186/s12864-016-2400-4
  5. Conservation of indigenous cattle genetic resources in Southern Africa’s smallholder areas: turning threats into opportunities — A review vol.30, pp.5, 2016, https://doi.org/10.5713/ajas.16.0024
  6. Insight into the genetic composition of South African Sanga cattle using SNP data from cattle breeds worldwide vol.48, pp.1, 2016, https://doi.org/10.1186/s12711-016-0266-1
  7. Genetic diversity in South African Nguni cattle ecotypes based on microsatellite markers vol.48, pp.2, 2016, https://doi.org/10.1007/s11250-015-0962-9
  8. Molecular identification of livestock breeds: a tool for modern conservation biology vol.92, pp.2, 2016, https://doi.org/10.1111/brv.12265
  9. Oral administration of azithromycin ameliorates trypanosomosis in Trypanosoma congolense-infected mice vol.116, pp.9, 2017, https://doi.org/10.1007/s00436-017-5542-7
  10. Internal diversification of non-Sub-Saharan haplogroups in Sahelian populations and the spread of pastoralism beyond the Sahara vol.164, pp.2, 2017, https://doi.org/10.1002/ajpa.23285
  11. Cattle genome-wide analysis reveals genetic signatures in trypanotolerant N’Dama vol.18, pp.1, 2017, https://doi.org/10.1186/s12864-017-3742-2
  12. The genome landscape of indigenous African cattle vol.18, pp.1, 2017, https://doi.org/10.1186/s13059-017-1153-y
  13. Whole genome scan reveals the genetic signature of African Ankole cattle breed and potential for higher quality beef vol.18, pp.1, 2017, https://doi.org/10.1186/s12863-016-0467-1
  14. Agricultural biodiversity is sustained in the framework of food sovereignty vol.18, pp.2-3, 2017, https://doi.org/10.1080/14888386.2017.1366872
  15. insertion polymorphisms in the African Sahel and the origin of Fulani pastoralists vol.44, pp.6, 2017, https://doi.org/10.1080/03014460.2017.1328073
  16. A glimpse of the future in animal nutrition science. 1. Past and future challenges vol.46, pp.5, 2017, https://doi.org/10.1590/s1806-92902017000500011
  17. Effect of genetic European taurine ancestry on milk yield of Ankole-Holstein crossbred dairy cattle in mixed smallholders system of Burundi highlands vol.48, pp.5, 2017, https://doi.org/10.1111/age.12578
  18. Signatures of Selection for Environmental Adaptation and Zebu × Taurine Hybrid Fitness in East African Shorthorn Zebu vol.8, pp.1664-8021, 2017, https://doi.org/10.3389/fgene.2017.00068
  19. Whole genome detection of signature of positive selection in African cattle reveals selection for thermotolerance vol.88, pp.12, 2017, https://doi.org/10.1111/asj.12851
  20. Body and meat characteristics of young bulls from Zebu Goudali of Cameroon and its crosses with the Italian Simmental pp.1828-051X, 2017, https://doi.org/10.1080/1828051X.2017.1326855
  21. Combining Landscape Genomics and Ecological Modelling to Investigate Local Adaptation of Indigenous Ugandan Cattle to East Coast Fever vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00385
  22. Genome-wide scan reveals divergent selection among taurine and zebu cattle populations from different regions pp.02689146, 2018, https://doi.org/10.1111/age.12724
  23. Assessing the Greenhouse Gas Mitigation Effect of Removing Bovine Trypanosomiasis in Eastern Africa vol.10, pp.5, 2018, https://doi.org/10.3390/su10051633