DOI QR코드

DOI QR Code

Effects of L-tryptophan, Fructan, and Casein on Reducing Ammonia, Hydrogen Sulfide, and Skatole in Fermented Swine Manure

  • Sheng, Q.K. (Institute of Animal Science and Veterinary Medicine, Shandong Provincial Academy of Agricultural Sciences) ;
  • Yang, Z.J. (Shandong Meishida Agriculture and Husbandry Technology) ;
  • Zhao, H.B. (Institute of Animal Science and Veterinary Medicine, Shandong Provincial Academy of Agricultural Sciences) ;
  • Wang, X.L. (Institute of Animal Science and Veterinary Medicine, Shandong Provincial Academy of Agricultural Sciences) ;
  • Guo, J.F. (Institute of Animal Science and Veterinary Medicine, Shandong Provincial Academy of Agricultural Sciences)
  • Received : 2014.12.01
  • Accepted : 2015.02.04
  • Published : 2015.08.01

Abstract

The effects of daily dietary Bacillus subtilis (Bs), and adding L-tryptophan, fructan, or casein to fecal fermentation broths were investigated as means to reduce the production of noxious gas during manure fermentation caused by ammonia, hydrogen sulfide ($H_2S$), and 3-methylindole (skatole). Eighty swine ($50.0{\pm}0.5kg$) were equally apportioned to an experimental group given Bs in daily feed, or a control group without Bs. After 6 weeks, fresh manure was collected from both groups for fermentation studies using a $3{\times}3$ orthogonal array, in which tryptophan, casein, and fructan were added at various concentrations. After fermentation, the ammonia, $H_2S$, L-tryptophan, skatole, and microflora were measured. In both groups, L-tryptophan was the principle additive increasing skatole production, with significant correlation (r = 0.9992). L-tryptophan had no effect on the production of ammonia, $H_2S$, or skatole in animals fed Bs. In both groups, fructan was the principle additive that reduced $H_2S$ production (r = 0.9981). Fructan and Bs significantly interacted in $H_2S$ production (p = 0.014). Casein was the principle additive affecting the concentration of ammonia, only in the control group. Casein and Bs significantly interacted in ammonia production (p = 0.039). The predominant bacteria were Bacillus spp. CWBI B1434 (26%) in the control group, and Streptococcus alactolyticus AF201899 (36%) in the experimental group. In summary, daily dietary Bs reduced ammonia production during fecal fermentation. Lessening L-tryptophan and increasing fructan in the fermentation broth reduced skatole and $H_2S$.

Keywords

References

  1. An, C., T. Kuda, T. Yazaki, H. Takahashi, and B. Kimura. 2014. Caecal fermentation, putrefaction and microbiotas in rats fed milk casein, soy protein or fish meal. Appl. Microbiol. Biotechnol. 98:2779-2787. https://doi.org/10.1007/s00253-013-5271-5
  2. Doerner, K. C., K. L. Cook, and B. P. Mason. 2009. 3-Methylindole production is regulated in Clostridium scatologenes ATCC 25775. Lett. Appl. Microbiol. 48:125-132. https://doi.org/10.1111/j.1472-765X.2008.02502.x
  3. Eom, H. J., J. S. Moon, E. Y. Seo, and N. S. Han. 2009. Heterologous expression and secretion of lactobacillus amylovorus alpha-amylase in leuconostoc citreum. Biotechnol. Lett. 31:1783-1788. https://doi.org/10.1007/s10529-009-0079-1
  4. Jensen, B. 2006. Prevention of boar taint in pig production. Factors affecting the level of skatole. Acta Vet. Scand. 48(Suppl 1):S6. https://doi.org/10.1186/1751-0147-48-S1-S6
  5. Jeon, B. S., J. H. Kwag, Y. H. Yoo, J. O. Cha, and H. S. Park. 1996. Effects of feeding enzymes, probiotics or yucca powder on pig growth and odor-generating substances in feces. Korean J. Anim. Sci. 38:52-58.
  6. Kim, H. J., J. S. Woo, O. S. Kwon, B. J. Min, K. S. Shon, J. H. Jo, Y. J. Chen, and I. H. Kim. 2005. Effects of bacillus subtilis supplementation on egg quality, blood characteristics and fecal NH3-N in laying hens. Korean J. Poult. Sci. 32:9-14.
  7. Lee, S. J., N. H. Shin, J. U. Ok, H. S. Jung, G. M. Chu, J. D. Kim, I. H. Kim, and S. S. Lee. 2009. Effects of dietary synbiotics from anaerobic microflora on growth performance, noxious gas emission and fecal pathogenic bacteria population in weaning pigs. Asian Australas. J. Anim. Sci. 22:1202-1208. https://doi.org/10.5713/ajas.2009.90045
  8. Li, C. 2009. Effects of Dietary Fiber on Skatole Levels in Swine Body and the Underlying Regulatory Mechanisms. Ph.D Thesis, Zhejiang University, Hangzhou, China. VIII.
  9. Li, F. 2011. Degradation of Skatole That Caused Boar Taint by Lactic Acid Bacteria. Ph.D Thesis, Southwest University, Chongqing, China. 141-142.
  10. Lin, R. S., M. W. Orcutt, R. D. Allrich, and M. D. Judge .1992. Effect of dietary crude protein content on skatole concentration in boar serum. Meat Sci. 31:473-479. https://doi.org/10.1016/0309-1740(92)90029-4
  11. Lundstroma, K., B. Malmforsb, S. Sternb, L. Rydhmerb, L. Eliasson-Sellingc, A. B. Mortensend, and H. P. Mortensend. 1994. Skatole levels in pigs selected for high lean tissue growth rate on different dietary protein levels. Livest. Prod. Sci. 38:125-132. https://doi.org/10.1016/0301-6226(94)90056-6
  12. Martinez, R. C. R., H. R. Cardarelli, W. Borst, S. Albrecht, H. Schols, O. P. Gutierrez, A. J. H. Maathuis, B. D. G. de Melo Franco, E. C. P. De Martinis, E. G. Zoetendal, K. Venema, S. M. I. Saad, and H. Smidt. 2013. Effect of galactooligosaccharides and bifidobacterium animalisBb-12 on growth of lactobacillus amylovorus DSM 16698, microbial community structure, and metabolite production in an in vitro colonic model set up with human or pig microbiota. FEMS Microbiol. Ecol. 84:110-123. https://doi.org/10.1111/1574-6941.12041
  13. Nowak, A. and Z. Libudzisz. 2009. Ability of probiotic lactobacillus casei DN 114001 to bind or/and metabolise heterocyclic aromatic amines in vitro. Eur. J. Nutr. 48:419-427. https://doi.org/10.1007/s00394-009-0030-1
  14. Powers, W. J., S. B. Zamzow, and B. J. Kerr. 2007. Reduced crude protein effects on aerial emissions from swine. Appl. Eng. Agric. 23:539-546. https://doi.org/10.13031/2013.23487
  15. Rinkinen, M. L., J. M. K. Koort, A. C. Ouwehand, E. Westermarck, and K. J. Bjorkroth. 2004. Streptococcus alactolyticus is the dominating culturable lactic acid bacterium species in canine jejunum and feces of four fistulated dogs. FEMS Microbiol. Lett. 230:35-39. https://doi.org/10.1016/S0378-1097(03)00851-6
  16. Salazar, N., E. M. Dewulf, A. M. Neyrinck, L. B. Bindels, P. D. Cani, J. Mahillon, W. M. de Vos, J. P. Thissen, M. Gueimonde, C. G. de Los Reyes-Gavilan, and N. M. Delzenne. 2014. Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clin. Nutr. http://dx.doi.org/10.1016/j.clnu.2014.06.001
  17. Su, Y., W. Yao, and W.Y. Zhu. 2006. Changes of bacterial flora from hindguts of piglets after oral administration of lactobacillus amylovorus S1 as a probiotic strain. Wei Sheng Wu Xue Bao. 46:961-966.
  18. Suarez-Estrella, F., M. M. Jurado, M. C. Vargas-Garcia, M. J. Lopez, and J. Moreno. 2013. Isolation of bio-protective microbial agents from eco-composts. Biol. Control 67:66-74. https://doi.org/10.1016/j.biocontrol.2013.07.003
  19. Vhile, S. G., N. P. Kjos, H. Sorum, and M. O verland. 2012. Feeding jerusalem artichoke reduced skatole level and changed intestinal microbiota in the gut of entire male pigs. Animal 6:807-814. https://doi.org/10.1017/S1751731111002138
  20. Wesoly, R. and U. Weiler. 2012. Nutritional influences on skatole formation and skatole metabolism in the pig. Animals 2:221-242. https://doi.org/10.3390/ani2020221
  21. Whitehead, T. R., N. P. Price, H. L. Drake, and M. A. Cotta. 2008. Catabolic pathway for the production of skatole and indoleacetic acid by the acetogen clostridium drakei, Clostridium scatologenes, and swine manure. Appl. Environ. Microbiol. 74:1950-1953. https://doi.org/10.1128/AEM.02458-07
  22. Wutzke, K. D., M. Lotz, and C. Zipprich. 2010. The effect of preand probiotics on the colonic ammonia metabolism in humans as measured by lactose-$[^{15}N_2]$ureide. Eur. J. Clin. Nutr. 64:1215-1221. https://doi.org/10.1038/ejcn.2010.120
  23. Xu, Z. R., C. H. Hu, and M. Q. Wang. 2002. Effects of fructooligosaccharide on conversion of L-tryptophan to skatole and indole by mixed populations of pig fecal bacteria. J. Gen. Appl. Microbiol. 48:83-89. https://doi.org/10.2323/jgam.48.83
  24. Yokoyama, M. T., and J. R. Carlson. 1974. Dissimilation of tryptophan and related indolic compounds by ruminal microorganisms in vitro. Appl. Environ. Microbiol. 27:540-548.
  25. Yokoyama, M. T., K. A. Johnson, and J. R. Carlson. 1983. Factors influencing the production of p-cresol and skatole by lactobacillus isolated from the rumen and pig feces. Proceedings of XVII Conference on Rumen Function, Chicag, IL, USA. 17:19-20.
  26. Yumoto, I., K. Hirota, S. Yamaga, Y. Nodasaka, T. Kawasaki, H. Matsuyama, and K. Nakajima. 2004. Bacillus asahii sp. nov., a novel bacterium isolated from soil with the ability to deodorize the bad smell generated from short-chain fatty acids. Int. J. Syst. Evol. Microbiol. 54:1997-2001. https://doi.org/10.1099/ijs.0.03014-0
  27. Zhang, Q., M. Hu, R. Zhu, X. Ren, Y. Wu, H. Wang, Y. Liu, and S. Wang. 2009. Microbial properties and application of superior bacteria in deep-litter ecosystem for piggery. Shandong Agricultural Sciences (China). 4:99-105.
  28. Zhang, Z., Y. Wu, W. Cheng, and R. Wu. 2000. Single strand conformation polymorphism analysis of K-ras gene mutations by capillary electrophoresis with laser-induced fluorescence (LIF) detector. Clin. Chim. Acta. 301:205-211. https://doi.org/10.1016/S0009-8981(00)00310-7
  29. Zhao, P. Y., J. P. Wang, and I. H. Kim. 2013. Evaluation of dietary fructan supplementation on growth performance, nutrient digestibility, meat quality, fecal microbial flora, and fecal noxious gas emission in finishing pigs. J. Anim. Sci. 91:5280-5286. https://doi.org/10.2527/jas.2012-5393

Cited by

  1. Effect of Bacillus subtilis Natto on Meat Quality and Skatole Content in TOPIGS Pigs vol.29, pp.5, 2015, https://doi.org/10.5713/ajas.15.0478
  2. High-Meat-Protein High-Fat Diet Induced Dysbiosis of Gut Microbiota and Tryptophan Metabolism in Wistar Rats vol.68, pp.23, 2015, https://doi.org/10.1021/acs.jafc.0c00245
  3. The Microbiota–Gut–Brain Axis and Alzheimer’s Disease: Neuroinflammation Is to Blame? vol.13, pp.1, 2021, https://doi.org/10.3390/nu13010037
  4. Bacillus subtilis natto as a potential probiotic in animal nutrition vol.41, pp.3, 2015, https://doi.org/10.1080/07388551.2020.1858019