DOI QR코드

DOI QR Code

Differences in swine gut microbiota in southern region of Republic of Korea

한국 남부 지역별 돼지 장내 미생물생태 비교분석

  • Kim, Jungman (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University) ;
  • Guevarra, Robin B. (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University) ;
  • Nguyen, Son G. (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University) ;
  • Unno, Tatsuya (Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University)
  • 김정만 (제주대학교 생명자원대학 생명공학부) ;
  • ;
  • ;
  • 운노타쯔야 (제주대학교 생명자원대학 생명공학부)
  • Received : 2014.12.09
  • Accepted : 2015.02.12
  • Published : 2015.03.31

Abstract

Since the banning of antibiotic growth promoters (AGPs), the death of livestock has been increased, thus there is a strong demand for AGP-alternatives. Modulation of gut microbiota has been reported to affect host physiological functions and suggested to be a novel approach for developing AGP-alternatives. However, little has been understood about livestock gut microbiota compared to that of humans. We conducted preliminary study provide fundamental information regarding to regional differences in swine gut microbiota. Swine fecal samples were obtained from farms in Jeju (n=40), Gwangju (n=28), and Haenam (n=30). MiSeq was used to sequence 16S rRNA V4 region, and Mothur pipeline (Schloss et al., 2009) was used for data processing. A total of 5,642,125 reads were obtained and 3,868,143 reads were remained after removing erroneous reads. Analysis of taxonomic composition at the phylum level indicated greater abundance of Firmicutes among Jeju swine, and cluster analysis of distribution of operational taxonomic units also showed regional differences among swine gut microbiota. In addition, correlation analysis between non-metric multidimensional scaling and abundance of phyla suggested that the phyla Actinobacter, Verrucomicrobia, Firmicutes, and Fibrobacteres were driving factors for the regional differences. Livestock gut microbiota may be affected by diet and practices in farms. Our results indicated significant regional differences in swine gut microbiota, suggesting that future livestock gut microbiota studies should be designed with the regional differences in mind.

성장촉진제로 항생제 사용이 금지가 된 이후, 가축들의 사망률이 증가되어 항생제 대체제를 개발해야 하는 것이 시급하다. 그러한 대체제 개발에 새로운 접근 중 하나는 숙주의 신체적 기능에 영향을 준다고 알려진 장내미생물생태를 조절하는 것이다. 하지만 가축의 장내미생물에 대한 이해가 인간과 비교하여 볼 때 많이 부족한 실정이다. 본 연구에서는 돼지장내미생물생태가 지역적 차이가 있음에 대한 기본적인 정보를 제공한다. 돼지 분변샘플은 제주(n=40), 광주(n=28), 해남(n=30) 농가로부터 채취하였으며, MiSeq을 이용하여 16S rRNA V4 지역을 시퀀싱하였다. 또한 Mothur 파이프라인을 이용하여 MiSeq으로부터 얻은 데이터를 처리하였다. 총 5,642,125 reads를 얻었으며, 에러시퀀스들을 제거한 후 최종적으로 3,868,143 reads가 남았다. Phylum 수준의 taxonomic composition 분석에서는 제주 돼지들이 Firmicutes를 가장 많이 포함하고 있었으며, Operational Taxonomic Units 분포분석에서 또한 지역적 차이에 따라 돼지장내미생물생태가 다르다는 것을 확인하였다. Non-metric multidimensional scaling과 Phyla의 풍부함 사이의 상관관계분석에서는 Actinobacter, Verrucomicrobia, Firmicutes, Fibrobacteres이 세 개의 지역에 있는 돼지들의 장내미생물생태 차이를 나타나게 하는 장내 미생물 요소라는 것을 확인하였다. 그러한 가축의 장내미생물생태는 농장에서 사용하는 사료와 사양관리에 의해 많은 영향을 미치는 것으로 생각된다. 본 연구결과는 돼지장내미생물생태가 지역적으로 많은 차이가 있다는 것을 나타내며, 추후에 가축의 장내미생물생태에 관한 연구는 지역적 차이가 있다는 것을 고려하여 설계해야 될 것이다.

Keywords

References

  1. Casewell, M., Friis, C., Marco, E., McMullin, P., and Phillips, I. 2003. The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J. Antimicrob. Chemother. 52, 159-161. https://doi.org/10.1093/jac/dkg313
  2. Kim, H.B., Borewicz, K., White, B.a., Singer, R.S., Sreevatsan, S., Tu, Z.J., and Isaacson, R.E. 2012. Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin. Proc. Natl. Acad. Sci. USA 109, 1-6. https://doi.org/10.1073/iti0112109
  3. Kim, K.R., Owens, G., Kwon, S.I., So, K.H., Lee, D.B., and Ok, Y.S. 2011. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water, Air, and Soil Pollution 214, 163-174. https://doi.org/10.1007/s11270-010-0412-2
  4. Konstantinov, S.R., Smidt, H., Akkermans, A.D.L., Casini, L., Trevisi, P., Mazzoni, M., De Filippi, S., Bosi, P., and de Vos, W.M. 2008. Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets. FEMS Microbiol. Ecol. 66, 599-607. https://doi.org/10.1111/j.1574-6941.2008.00517.x
  5. Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K., and Schloss, P.D. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112-5120. https://doi.org/10.1128/AEM.01043-13
  6. Ley, R.E., Backhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R.D., and Gordon, J.I. 2005. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 102, 11070-11075. https://doi.org/10.1073/pnas.0504978102
  7. Ley, R.E., Turnbaugh, P.J., Klein, S., and Gordon, J.I. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022-1023. https://doi.org/10.1038/4441022a
  8. Looft, T., Allen, H.K., Cantarel, B.L., Levine, U.Y., Bayles, D.O., Alt, D.P., Henrissat, B., and Stanton, T.B. 2014a. Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations. ISME J. 8, 1566-1576. https://doi.org/10.1038/ismej.2014.12
  9. Looft, T., Allen, H.K., Casey, T.A., Alt, D.P., and Stanton, T.B. 2014b. Antimicrobials, resistance and chemotherapy carbadox has both temporary and lasting effects on the swine gut microbiota Front. Microbiol. 5, 276.
  10. Million, M. and Raoult, D. 2013. The role of the manipulation of the gut microbiota in obesity. Curr. Infect. Dis. Rep. 15, 25-30. https://doi.org/10.1007/s11908-012-0301-5
  11. Oliver, W.T. and Wells, J.E. 2013. Lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology in nursery pigs. J. Anim. Sci. 91, 3129-3136. https://doi.org/10.2527/jas.2012-5782
  12. Sanz, Y., Santacruz, A., and De Palma, G. 2008. Insights into the roles of gut microbes in obesity. Interdiscip. Perspect. Infect. Dis 2008, 829101.
  13. Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541. https://doi.org/10.1128/AEM.01541-09
  14. Shen, L. 2014. Letter: gut microbiota modulation contributes to coffee's benefits for non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 39, 1441-1442. https://doi.org/10.1111/apt.12781
  15. Thompson, C.L., Wang, B., and Holmes, A.J. 2008. The immediate environment during postnatal development has long-term impact on gut community structure in pigs. ISME J. 2, 739-748. https://doi.org/10.1038/ismej.2008.29
  16. Tsabouri, S., Priftis, K.N., Chaliasos, N., and Siamopoulou, A. 2014. Modulation of gut microbiota downregulates the development of food allergy in infancy. Allergol. Immunopathol. (Madr) 42, 69-77. https://doi.org/10.1016/j.aller.2013.03.010
  17. van der Waaij, L.A., Harmsen, H.J., Madjipour, M., Kroese, F.G., Zwiers, M., van Dullemen, H.M., de Boer, N.K., Welling, G.W., and Jansen, P.L. 2005. Bacterial population analysis of human colon and terminal ileum biopsies with 16S rRNA-based fluorescent probes: commensal bacteria live in suspension and have no direct contact with epithelial cells. Inflamm. Bowel Dis. 11, 865-871. https://doi.org/10.1097/01.mib.0000179212.80778.d3
  18. Xiao, S. and Zhao, L. 2014. Gut microbiota-based translational biomarkers to prevent metabolic syndrome via nutritional modulation. FEMS Microbiol. Ecol. 87, 303-314. https://doi.org/10.1111/1574-6941.12250

Cited by

  1. Swine gut microbiota and its interaction with host nutrient metabolism vol.6, pp.4, 2015, https://doi.org/10.1016/j.aninu.2020.10.002