DOI QR코드

DOI QR Code

다수의 위협과 복수의 목적지가 존재하는 임무에서 복수 무인기의 생존율 극대화를 위한 최적 경로 계획 및 분석

Optimal path planning and analysis for the maximization of multi UAVs survivability for missions involving multiple threats and locations

  • 투고 : 2014.11.26
  • 심사 : 2015.05.19
  • 발행 : 2015.06.01

초록

본 연구에서는 각각 다른 목적지에서 다수의 임무를 수행해야하는 복수 무인항공기(Unmanned Aerial Vehicle, UAVs)의 경로를 결정할 때, 무인항공기의 생존가능성을 고려하여 경로를 결정하는 프레임워크를 제안하였다. 본 라우팅 문제는 무인항공기 안전과 임무 완료시간 간의 trade-off 를 나타내는 비용 매트릭스를 이용한 차량경로문제(Vehicle Routing Problem, VRP)로 정의할 수 있다. 특정위치에서 무인항공기의 위험 레벨은 감지될 확률과 격추될 확률을 고려하여 모델링 하였고, 위협 레벨과 비행거리를 고려한 두 지역간의 최소비용경로는 육각형격자(Hexagonal cells)에서 Dijkstra 알고리듬을 사용하여 결정하였다. 또한, 지속적으로 다수의 적을 감시 정찰하는 임무를 수행하는 복수 무인항공기의 최적경로를 결정하는 case study를 수행하였으며, 그 결과를 논의하였다.

This paper proposes a framework to determine the routes of multiple unmanned aerial vehicles (UAVs) to conduct multiple tasks in different locations considering the survivability of the vehicles. The routing problem can be formulated as the vehicle routing problem (VRP) with different cost matrices representing the trade-off between the safety of the UAVs and the mission completion time. The threat level for a UAV at a certain location was modeled considering the detection probability and the shoot-down probability. The minimal-cost path connecting two locations considering the threat level and the flight distance was obtained using the Dijkstra algorithm in hexagonal cells. A case study for determining the optimal routes for a persistent multi-UAVs surveillance and reconnaissance missions given multiple enemy bases was conducted and its results were discussed.

키워드

참고문헌

  1. Mylander, W. C., Wagner, D. H., "Naval Operations Analysis," Naval Institute Press, Annapolis, Maryland, 1999.
  2. Dogan, A., "Probabilistic Approach in Path Planning for UAVs," In IEEE international symposium on intelligent control, Houston, October 2003, pp.608-613.
  3. Yoon, S. J., Ahn, J. J., Nam, G. W., "A Study on the UAV Guidance and Control Minimizing Radar Exposure," Proceedings of the 2004 KSAS Spring Conference, 2004, pp.318-321
  4. Novy, M. C., Jacques, D. T., Pachter, M., "Air Vehicle Optimal Trajectories Between Two Radars," Proceedings of the American Control Conference, Anchorage, AK, 2002.
  5. Bortoff, S. A., "Path Planning for UAVs," Proceedings of the American Control Conference, 2000.
  6. Kant, G., "Algorithms for Drawing Planar Graph," Ph. D. Thesis, Utrecht University, 1993.
  7. Lee, H. T., Meyn, L. A., and Kim, S. "Probabilistic safety assessment of unmanned aerial system operations." Journal of Guidance, Control, and Dynamics, Vol.36, No.2, 2013, pp. 610-617. https://doi.org/10.2514/1.57572
  8. Kim, K. T., Park, S. H., Cho, S. J., Jeon, G. W., "An Optimal Path Planning for Survival Rate Maximization of Submarine," Journal of the Military Operations Research Society of Korea, Vol.36, No.3, 2010, pp.135-145
  9. Jun, M. S., D'Andrea, R., "Path Planning for Unmanned Aerial Vehicles in Uncertain and Adversarial Environments," Cooperative Control: Models, Applications and Algorithms Cooperative Systems Vol.1, 2003, pp. 95-110. https://doi.org/10.1007/978-1-4757-3758-5_6
  10. Woo, K. S., Park, J. H., Huh, U. Y., "Dynamic Path Planning for Mobile Robots Using Fuzzy Potential Field Method," The Transactions of The Korean Institute of Electrical Engineers, Vol.61, No.2, 2012, pp.291-297. https://doi.org/10.5370/KIEE.2012.61.2.291
  11. Skolnik, M. I., "Radar handbook." NewYork, McGrawHill, 1990.
  12. DiFranoco, J. V., Rubin, W. L., "Radar Detection," Englewood Cliffs, Prentice-Hall, 1968.
  13. "Unmanned aircraft systems roadmap 2005-2030." Defense Technical Information Center, 2005.
  14. Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. "Introduction to algorithms." Cambridge, MIT press, 2001.
  15. Moon, G. J., Park, S. M., "Analysis and Reconstruction of Vehicle Speeds to Design an Efficient Time Dependent VRP Heuristic," Journal of the Society of Korea Industrial and Systems Engineering, Vol.35, No.1, 2012, pp.140-147.