DOI QR코드

DOI QR Code

Enhancement of Antioxidant Activity, Total Phenolic and Flavonoid Content of Saccharina japonica by Submerged Fermentation with Aspergillus oryzae

Aspergillus oryzae 심부배양에 의한 다시마의 항산화능, 총페놀 및 플라보노이드 함량의 증대

  • Rafiquzzaman, S.M. (Dept. of Biotechnology, Pukyong National University) ;
  • Kong, In-Soo (Dept. of Biotechnology, Pukyong National University) ;
  • Kim, Jin-Man (Department of Biotechnology, CNU Brewing Science and Technology Institute, Chonnam National University)
  • ;
  • 공인수 (부경대학교 생물공학과) ;
  • 김진만 (전남대학교 생명산업공학과)
  • Received : 2015.01.07
  • Accepted : 2015.02.25
  • Published : 2015.02.27

Abstract

The current investigation was carried out to explore the possibility of submerged fermentation of Saccharina japonica as sole substrate using Aspergillus oryzae. In this study we used 2% S. japonica powder as fermentation media for A. oryzae. Fermentation period was optimized by monitoring the fermented sample at regular intervals for a period of 7 days. Results found that a fermentation period of 5 days was effective with maximum desirable characteristics such as total sugar, total phenolic and flavonoid contents. Under optimum fermentation period, fermented extracts showed enhanced antioxidant activity as determined by different assays such DPPH radical scavenging, ABTS scavenging and phosphomolydenum assay. This study provides the information for the enhancement of bioactive molecules in an eco-friendly manner and also paves way towards the development of wide range of seaweed-based functional foods.

Keywords

References

  1. Pandey, A. (2003) Solid-state fermentation. Biochem. Eng. J. 13: 81-84. https://doi.org/10.1016/S1369-703X(02)00121-3
  2. Juan, M. Y. and C. C. Chou (2010) Enhancement of antioxidant activity, total phenolic and flavonoid content of black soybeans by solid state fermentation with Bacillus substilis BCRC 14715. Food Microbiol. 27: 918-923. https://doi.org/10.1016/j.fm.2010.05.009
  3. Pandey, A., C. R. Soccol, and D. A. Mitchell (2000) New developments in solid state fermentation: I-Bioprocess and products. Process Biochem. 35: 1135-1169.
  4. Pandey, A., P. Selvakumar, C. R. Soccol, and P. Nigam (1999) Solid state fermentation for the production of industrial enzymes. Curr. Sci. 77: 149-162.
  5. Biesebeke, R. T., G. Rujiter, S. P. Yovita, Rahardjo, M. J. Hoogschagen, M. Herrikhusen, A. Levin, G. V. Kenneth, V. Driel, A. I. Maarten, Schutyser, Dijksterhuis, Y. Zhu, F. J. Weber, , M. Willem, De Vos, A. M. J. J. Kees, V. D. Hondel, A. Rinzema., and P. J. Punt (2002) Aspergillus oryzae in solid state and submerged fermentations progress report on multi-disciplinary project. FEMS Yeast Res. 2: 245-248.
  6. Babitha, S., C. R. Soccol, and A. Pandey (2006) Jackfruit seed-a novel substrate for the production of Monascus pigments through solid state fermentation. Food Technol. Biotechnol. 44: 465-471.
  7. Holdt, S. L. and S. Krran (2011) Bioactive compounds in seaweed: Functional food applications and legislations. J. Appl. Phycol. 23: 543-597. https://doi.org/10.1007/s10811-010-9632-5
  8. Gao, K. and K. R. McKinley (1994) Use of macroalgae for marine biomass production and $CO_2$remediation: a review. J. Appl. Phycol. 6: 45-60. https://doi.org/10.1007/BF02185904
  9. Bartsch, I., C. Wiencke, K. Bischof,, C.M. Buchholz, H. Buck, A. Eggert, P. Feuerpfeil, D. Hanelt, S. Jacobsen, R. Karez, U. Karsten, M. Molis, M.Y. Roleda, H. Schubert, R. Schumann, K. Valentin, F. Weinberger, and J. Wiese (2008) The genus Laminaria sensulato: recent insights and developments. Eur. J. Phycol. 43: 1-86. https://doi.org/10.1080/09670260701711376
  10. Kim, M. J., K. M. Maria John, J. N. Choi, S. Lee, A. J. Kim, Y. M. Kim, and C. H. Lee (2013) Changes in secondary metabolites of green tea during fermentation by Aspergillus oryzae and its effect on antioxidant potential. Food Res. Int. 53: 670-677. https://doi.org/10.1016/j.foodres.2012.12.053
  11. Baek, J. G., S. M. Shim, D. Y. Kwon, H. K. Choi, C. H. Lee, and Y. S. Kim (2010) Metabolite profiling of Cheonggukjang, a fermented soybean paste, inoculated with various Bacillus strains during fermentation. Biosci. Biotechnol. Biochem. 74: 1860-1868. https://doi.org/10.1271/bbb.100269
  12. Jeng, K. C., C. S. Chen, Y. P. Fang, R. C. W. Hou, and Y. S. Chen (2007) Effect of microbial fermentation on content of statin, GABA, and polyphenols in Pu-Erh tea. J. Agric. Food Chem. 55: 8787-8792. https://doi.org/10.1021/jf071629p
  13. Kim, J., J. N. Choi, D. Kang, G. H. Son, Y. S. Kim, and H. K. Choi (2011) Correlation between antioxidative activities and metabolite changes during Cheonggukjang fermentation. Biosci. Biotechnol. Biochem. 75: 732-739. https://doi.org/10.1271/bbb.100858
  14. Shyur, L. F. and N. S. Yang (2008) Metabolomics for phytomedicine research and drug development. Curr. Opin. Chem. Biol. 12: 66-71. https://doi.org/10.1016/j.cbpa.2008.01.032
  15. Chirtchai, P., C. Chaiyavat, C. Sunee, T. Somsak, V. Wonnop, and P. Suchart (2011) 8-Hydroxygenistein formation of soybean fermented with Aspergillus oryzae BCC 3088. Afr. J. Agric. Res. 6: 785-789.
  16. Hong, K. J., C. H. Lee, and S. W. Kim (2004) Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food 7: 430-435. https://doi.org/10.1089/jmf.2004.7.430
  17. Jung, K. A., S. R. Lim, Y., Kim, and J. M. Park (2013) Potential macroalgae as feed stocks for biorefinery. Bioresour. Technol. 135: 182-190. https://doi.org/10.1016/j.biortech.2012.10.025
  18. Gupta, S., N. Abu-Ghannam, and A. G. M. Scannell (2011) Growth and kinetics of Lactobacillus plantarum in the fermentation of edible Irish brown seaweeds. Food Bioprod. Process. 89: 346-355. https://doi.org/10.1016/j.fbp.2010.10.001
  19. Nielsen, S. S. (2003) Phenol-sulfuric acid method for total carbohydrates. Food analysis laboratory manual. pp. 39-44. Indiana. Kluwer Academic/Plenum Publisher.
  20. Singleton, V. L., R. Orthofer, and R. M. Lamuela-Raventos (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  21. Marinova, D., F. Ribarova, and M. Atanassova (2005) Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Univ. Chem. Technol. Metallurgy 40: 255-260.
  22. Prieto, P., M. Pineda, and M. Aguilar (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a Phosphomolybdenum Complex: Specific application to the determination of vitamin E. Anal. Biochem. 269: 337-341. https://doi.org/10.1006/abio.1999.4019
  23. Blois, M. S. (1958) Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  24. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice Evans (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  25. Oyaizu, M. (1986) Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  26. Rafiquzzaman, S. M., E. Y. Kim , Y. R. Kim, T. J. Nam, and I. S. Kong (2013) Antioxidant activity of glycoprotein purified from Undaria pinnatifida measured by an in vitro digestion model. Int. J. Biol. Macromol. 62: 265-272. https://doi.org/10.1016/j.ijbiomac.2013.09.009
  27. Shobharani, P., P. M. Halami, and N. M. Sachindra (2013) Potential of marine lactic acid bacteria to ferment Sargassum sp. for enhanced anticoagulant and antioxidant properties. J. Appl. Microbiol. 114: 96-107. https://doi.org/10.1111/jam.12023
  28. Kang Y. M., B. J. Lee, J. I. Kim, B. H. Nam, J. Y. Cha, Y. M. Kim, C. B. Ahn, J. S. Choi, I. S. Choi, and J. Y. Je (2012) Antioxidant effects of fermented sea tangle (Laminaria japonica) by Lactobacillus brevis BJ20 in individuals with high level of ${\gamma}$-GT: A randomized, double-blind, and placebo-controlled clinical study. Food Chem. Toxicol. 50: 1166-1169. https://doi.org/10.1016/j.fct.2011.11.026
  29. Gupta, S., N. Abu-Ghannam, and G. Rajauria (2012) Effect of heating and probiotic fermentation on the phytochemical content and antioxidant potential of edible Irish brown seaweeds. Bot. Marina 55: 527-537.
  30. Eom, S. H., Y. M. Kang, J. H. Park, D. U. Yu, E. U. Jeong, M. S. Lee, and Y. M. Kim (2011) Enhancement of polyphenol content and antioxidant activity of brown alga Eisenia bicyclis extract by microbial fermentation. Fish Aquat. Sci. 14: 192-197.
  31. General, T., B. Prasha, H. J. Kim, N. Vadakedath, and M. G. Cho (2014) Sachharina japonica, a potential feedstock for pigment production using submerged fermentation. Biotechnol. Bioprocess Eng. 19: 711-719. https://doi.org/10.1007/s12257-013-0709-2
  32. Song, H. S., S. H. Eom, Y. M. Kang, J. D. Choi, and Y. M. Kim (2011) Enhancement of the antioxidant and anti-inflammatory activity of Hizikia fusiforme water extract by lactic acid bacteria fermentation. Korean J. Fish Aquat. Sci. 44: 111-117. https://doi.org/10.5657/kfas.2011.44.2.111
  33. Jimenez-Escrig, A., I. J. Jimenez, R. Pulido, and F. S. Calixto (2001) Antioxidant activity of fresh and processed edible seaweeds. J. Sci. Food Agric. 81: 530-534. https://doi.org/10.1002/jsfa.842
  34. Vijayabaskar P. and V. Shiyamala (2012) Antioxidant properties of seaweed polyphenol from Turbinaria ornate (Turner) J. Agardh, 1848. Asian Pac. J. Trop. Biomed. 2: S95-S98.

Cited by

  1. 우수한 탈취율과 항산화능을 갖는 다시마 추출물의 규명 vol.31, pp.3, 2015, https://doi.org/10.5764/tcf.2019.31.3.195
  2. Hypolipidemic Effects of Fermented Seaweed Extracts by Saccharomyces cerevisiae and Lactiplantibacillus plantarum vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.772585
  3. Valorization of Macroalgae through Fermentation for Aquafeed Production: A Review vol.7, pp.4, 2015, https://doi.org/10.3390/fermentation7040304