DOI QR코드

DOI QR Code

Effects of DBD-bio-plasma on the HSP70 of Fibroblasts: A New Approach on Change of Molecular Level by Heat Shock in the Cell

Fibroblasts 세포주의 HSP70에 대한 DBD-bio-plasma의 effects: Cell에서 Heat Shock에 의한 Molecular Level 변화로의 새로운 접근법

  • Kim, Kyoung-Yeon (Department of Medicine and Health Sciences, College of Medicine, the Catholic University of Korea) ;
  • Yi, Junyeong (Department of Medicine and Health Sciences, College of Medicine, the Catholic University of Korea) ;
  • Nam, Min-Kyung (Department of Medicine and Health Sciences, College of Medicine, the Catholic University of Korea) ;
  • Choi, Eun Ha (Plasma Bioscience Research Center, Kwangwoon University) ;
  • Rhim, Hyangshuk (Department of Medicine and Health Sciences, College of Medicine, the Catholic University of Korea)
  • 김경연 (가톨릭대학교 의생명건강과학과) ;
  • 이준영 (가톨릭대학교 의생명건강과학과) ;
  • 남민경 (가톨릭대학교 의생명건강과학과) ;
  • 최은하 (광운대학교 플라즈마 바이오과학 연구센터) ;
  • 임향숙 (가톨릭대학교 의생명건강과학과)
  • Received : 2014.11.22
  • Accepted : 2015.01.20
  • Published : 2015.02.27

Abstract

Plasma is an ionized gas mixture, consisting of neutral particles, positive ions, negative electrons, electronically excited atoms and molecules, radicals, UV photons, and various reactive species. Also, plasma has unique physical properties distinct from gases, liquids, and solids. Until now, non-thermal plasmas have been widely utilized in bio-medical applications (called bio-plasma) and have been developed for the plasma-related devices that are used in the medical field. Although numerous bio-plasma studies have been performed in biomedicine, there is no confirmation of the nonthermal effect induced by bio-plasma. Standardization of the biological application of plasma has not been evaluated at the molecular level in living cells. In this context, we investigated the biological effect of bio-plasma on living cells. Hence, we treated the fibroblasts with Dielectric Bauvier Discharge bio-plasma (DBD), and assessed the characteristic change at the molecular level, one of the typical cellular responses. Heat shock protein 70 (HSP70) regulates its own protein level in response to stimuli. HSP70 responds to heat shock by increasing its own expression at the molecular level in cells. Hence, we confirmed the level of HSP70 after treatment of mouse embryonic fibroblasts (MEFs) with DBD. Interestingly, DBD-plasma induced cell death, but there was no difference in the level of HSP70, which is induced by heat shock stimuli, in DBD-treated MEFs. Our data provide the basic information on the interaction between MEFs and DBD, and can help to design a molecular approach in this field.

Keywords

References

  1. Kalghatgi, S., C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford (2011) Effects of non-thermal plasma on mammalian cells. PLoS One 6: e16270. https://doi.org/10.1371/journal.pone.0016270
  2. Fridman, G., G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A. Fridman (2008) Applied plasma medicine. Plasma Process. Polym. 5: 503-533. https://doi.org/10.1002/ppap.200700154
  3. Vargo, J. J. and M. MD (2004) Clinical applications of the argon plasma coagulator. Gastrointest. Endosc. 59: 81-88. https://doi.org/10.1016/S0016-5107(03)02296-X
  4. Laroussi, M. (2005) Low temperature plasma-based sterilization: Overview and state-of-the-art. Plasma Process. Polym. 2: 391-400. https://doi.org/10.1002/ppap.200400078
  5. Fridman, G., M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A. Gutsol, and A. Brooks (2006) Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem. Plasma Process. 26: 425-442. https://doi.org/10.1007/s11090-006-9024-4
  6. Sladek, R. E. J. and E. Stoffels (2005) Deactivation of Escherichia coli by the plasma needle. J. Phys. D-Appl. Phys. 38: 1716-1721. https://doi.org/10.1088/0022-3727/38/11/012
  7. Kieft, I. E., M. Kurdi, and E. Stoffels (2006) Reattachment and apoptosis after plasma-needle treatment of cultured cells. Plasma Science, IEEE Trans. Plasma Sci. 34: 1331-1336. https://doi.org/10.1109/TPS.2006.876511
  8. Kieft, I. E., D. Darios, A. J. M. Roks, and E. Stoffels (2005) Plasma treatment of mammalian vascular cells: a quantitative description. Plasma Science, IEEE Trans. Plasma Sci. 33: 771-775. https://doi.org/10.1109/TPS.2005.844528
  9. Kalghatgi, S. U., G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus, M. Balasubramanian, V. N. Vasilets, A. Gutsol, A. Fridman, and G. Friedman (2007) Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma. Plasma Science, IEEE Trans. Plasma Sci. 35: 1559-1566. https://doi.org/10.1109/TPS.2007.905953
  10. Kalghatgi, S., G. Friedman, A. Fridman, and A. M. Clyne (2010) Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release. Ann. Biomed. Eng. 38: 748-757. https://doi.org/10.1007/s10439-009-9868-x
  11. Leduc, M., D. Guay, R. L. Leask, and S. Coulombe (2009) Cell permeabilization using a non-thermal plasma. New J. Phys. 11: 115021. https://doi.org/10.1088/1367-2630/11/11/115021
  12. Eliasson, B., W. Egli, and U. Kogelschatz (1994) Modelling of dielectric barrier discharge chemistry. Pure Appl. Chem. 66: 1275-1286.
  13. Panngom, K., K. Y. Baik, M. K. Nam, J. H. Han, H. Rhim, and E. H. Choi (2013) Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma. Cell Death Dis. 4: e642. https://doi.org/10.1038/cddis.2013.168
  14. Muchowski, P. J. and J. L. Wacker (2005) Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci. 6: 11-22. https://doi.org/10.1038/nrn1587
  15. Parsell, D. A. and S. Lindquist (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27: 437-496. https://doi.org/10.1146/annurev.ge.27.120193.002253
  16. Morimoto, R. I. and M. G. Santoro (1998) Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat. Biotechnol. 16: 833-838. https://doi.org/10.1038/nbt0998-833
  17. Jäättelä, M. (1999) Escaping cell death: survival proteins in cancer. Exp. Cell Res. 248: 30-43. https://doi.org/10.1006/excr.1999.4455
  18. Kiang, J. G. and G. C. Tsokos (1998) Heat shock protein 70kDa: Molecular biology, biochemisry, and physiology. Pharmacol. Ther. 80: 183-201. https://doi.org/10.1016/S0163-7258(98)00028-X
  19. Whitesell, L. and S. Lindquist (2009) Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin. Ther. Targets 13: 469-478. https://doi.org/10.1517/14728220902832697
  20. Arslan, M. A., M. Chikina, P. t. Csermely, and C. Soti (2012) Misfolded proteins inhibit proliferation and promote stress-induced death in SV40-transformed mammalian cells. FASEB J. 26: 766-777. https://doi.org/10.1096/fj.11-186197
  21. Li, C. Y., J. S. Lee, Y. G. Ko, J. I. Kim, and J. S. Seo (2000) Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J. Biol. Chem. 275: 25665-25671. https://doi.org/10.1074/jbc.M906383199
  22. Obrenovitch, T. P. (2008) Molecular physiology of preconditioning-induced brain tolerance to ischemia. Physiol. Rev. 88: 211-247. https://doi.org/10.1152/physrev.00039.2006
  23. Han, J. H., M. K. Nam, Y. H. Kim, D. W. Park, E. H. Choi, and H. Rhim (2012) Effects of argon-plasma jet on the cytoskeleton of fibroblasts: implications of a new approach for cancer therapy. KSBB J. 27: 308-312. https://doi.org/10.7841/ksbbj.2012.27.5.308
  24. Werner, S. L., D. Barken, and A. Hoffmann (2005) Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309: 1857-1861. https://doi.org/10.1126/science.1113319
  25. Ohmori, Y., and T. A. Hamilton (1994) Cell type and stimulus specific regulation of chemokine gene expression. Biochem. Biophys. Res. Communications 198: 590-596. https://doi.org/10.1006/bbrc.1994.1086
  26. Chow, N. A., L. D. Jasenosky, and A. E. Goldfeld (2014) A distal locus element mediates IFN-${\gamma}$ priming of lipopolysaccharide-stimulated TNF gene expression. Cell Rep. 9: 1718-1728. https://doi.org/10.1016/j.celrep.2014.11.011
  27. Huang, J., W. Chen, H. Li, X. Q. Wang, G. H. Lv, M. L. Khosa, M. Guo, K. C. Feng, P. Y. Wang, and S. Z. Yang (2011) Deactivation of A549 cancer cells in vitro by a dielectric barrier discharge plasma needle. J Appl Phys. 109: 053305. https://doi.org/10.1063/1.3553873
  28. Kim, W., K. C. Woo, G. C. Kim, and K. T. Kim (2011) Nonthermal-plasma-mediated animal cell death. Journal of Physics D: Applied Physics 44: 013001. https://doi.org/10.1088/0022-3727/44/1/013001
  29. Beere, H. M., B. B. Wolf, K. Cain, D. D. Mosser, A. Mahboubi, T. Kuwana, P. Tailor, R. I. Morimoto, G. M. Cohen, and D. R. Green (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol. 2: 469-475. https://doi.org/10.1038/35019501
  30. Choudhury, S., S. Bae, Q. Ke, J. Y. Lee, J. Kim, and P. M. Kang (2011) Mitochondria to nucleus translocation of AIF in mice lacking Hsp70 during ischemia/reperfusion. Basic Res. Cardiol. 106: 397-407. https://doi.org/10.1007/s00395-011-0164-1
  31. Garrido, C., E. Schmitt, C. Cand, N. Vahsen, A. Parcellier, and G. Kroemer (2003) HSP27 and HSP70: potentially oncogenic apoptosis inhibitors. Cell Cycle 2: 579-584.
  32. Evans, C. G., L. Chang, and J. E. Gestwicki (2010) Heat shock protein 70 (hsp70) as an emerging drug target. J Med Chem. 53: 4585-4602. https://doi.org/10.1021/jm100054f
  33. Ciocca, D. R. and S. K. Calderwood (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10: 86-103. https://doi.org/10.1379/CSC-99r.1
  34. Patury, S., Y. Miyata, and J. E. Gestwicki (2009) Pharmacological targeting of the Hsp70 chaperone. Curr. Top Med. Chem. 9: 1337-1351. https://doi.org/10.2174/156802609789895674
  35. Xia, Y., Y. Liu, P. Rocchi, M. Wang, Y. Fan, F. Qu, J. L. Iovanna, and L. Peng (2012) Targeting heat shock factor 1 with a triazole nucleoside analog to elicit potent anticancer activity on drug-resistant pancreatic cancer. Cancer Letters 318: 145-153. https://doi.org/10.1016/j.canlet.2011.09.043

Cited by

  1. Study of Hyperthermia Through the Bioplasma Treatment and Magnetic Properties of Fe3O4 Nanoparticles vol.51, pp.11, 2015, https://doi.org/10.1109/TMAG.2015.2435062