DOI QR코드

DOI QR Code

Optimum Reaction Condition of Enzymatic Hydrolysis for Production of Reducing Sugar from Enteromorpha intestinalis

창자파래로부터 환원당 생산을 위한 효소가수분해의 최적 반응조건

  • Kim, A-Ram (Department of Biotechnology, Pukyong National University) ;
  • Kim, Dong-Hyun (Department of Biotechnology, Pukyong National University) ;
  • Jeong, Gwi-Taek (Department of Biotechnology, Pukyong National University)
  • Received : 2014.11.21
  • Accepted : 2015.03.26
  • Published : 2015.04.27

Abstract

In this study, the production of total reducing sugar from macro green-algae Enteromorpha intestinalis by enzymatic hydrolysis was investigated. As a result of enzymatic hydrolysis using 13 kind commercial enzymes, the highest yield of 8.75% was obtained from Viscozyme L, which is multi-enzyme complex such as cellulase, arabanase, beta-glucanase, hemicellulase and xylanase. As a control, only 0.33% and 0.27% yield were obtained from 1% sulfuric acid and 0.05 M citrate buffer (pH 4.8), respectively. In the case of enzyme mixture, the mixture of $Viscozyme^{(R)}$ L and $Cellic^{(R)}$ CTec2 (1:1) was presented the highest yield of 10.67%. Finally, the 14.99% yield was obtained at 36 hr under the condition of 10% biomass and 30% enzyme mixture.

Keywords

References

  1. Choi, D., H. S. Sim, Y. L. Piao, W. Ying, and H. Cho (2009) Sugar production from raw seaweed using the enzyme method. J. Ind. Eng. Chem. 15: 12-15. https://doi.org/10.1016/j.jiec.2008.08.004
  2. Demibras, A. (2007) Progress and recent trends in biofuels. Prog. Energy Combust. Sci. 33: 1-18. https://doi.org/10.1016/j.pecs.2006.06.001
  3. Han, Y. B. (2010) Edible Seaweed II - Components and biological activity. pp. 262-269. Korea University Pres, Korea.
  4. Hayes, D. J., S. Fitzpatrick, M. H. B. Hayes, and J. R. H. Ross (2006) The biofine process - Production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks, pp. 139-164. In Kamm, B., Gruber, P. R. and M. Kamm (eds.), Biorefineries - Industrial Processes and Products, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  5. Doopedia, Enteromorpha intestinalis, http://www.doopedia.co.kr. (2015)
  6. Jeong, G. T. and D. H. Park (2014) Effect of pretreatment method on lipid extraction from Enteromorpha intestinalis. KSBB J. 29: 22-28. https://doi.org/10.7841/ksbbj.2014.29.1.22
  7. Jeong, G. T. (2014) Production of total reducing sugar and levulinic acid from brown macro-algae Sargassum fulvellum. Korean J. Microbiol. Biotechnol. 42: 177-183. https://doi.org/10.4014/kjmb.1404.04005
  8. Kim, C. (2010) Saccharification of Gelidium amansii by acid hydrolysis to generate mixed sugars. M.S. Thesis. Kyung Hee University, Seoul, Korea.
  9. Kim, D. H. and G. T. Jeong (2014) Antimicrobial and antioxidant activities of extracts of marine greenalgae Enteromorpha intestinalis. KSBB J. 29: 92-97. https://doi.org/10.7841/ksbbj.2014.29.2.92
  10. Kim, J. K. (2010) Pretreatment and enzymatic hydrolysis of Ulva pertusa Kjellman. M.S, Thesis. Inha University, Incheon, Korea.
  11. Kim, S. A., J. Kim, M. K. Woo, C. S. Kwak, and M. S. Lee (2005) Antimutagenic and cytotoxic effects of ethanol extracts from five kinds of seaweeds. J. Korean Soc. Food Sci. Nutr. 34: 451-459. https://doi.org/10.3746/jkfn.2005.34.4.451
  12. Kwak, C. S., S. A. Kim, and M. S. Lee (2005) The correlation of antioxidative effects of 5 Korean common edible seaweeds and total polyphenol content. J. Korean Soc. Food Sci. Nutr. 34: 1143-1150. https://doi.org/10.3746/jkfn.2005.34.8.1143
  13. Lee, H. O., D. S. Kim, J. R. Do, and Y. S. Ko (1999) Angiotensin-I converting enzyme inhibitory activity of algae. J. Korean Fish. Soc. 32: 427-431.
  14. Lee, S. M., J. H. Kim, H. Y. Cho, H. Joo, and J. H. Lee (2009) Production of bio-ethanol from brown algae by physicochemical hydrolysis. J. Korean Ind. Eng. Chem. 20: 517-521.
  15. Lee, Y. P. (2008) Seaweed in Jeju, Academic Press.
  16. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  17. Song, B. B., S. K. Kim, and G. T. Jeong (2011) Enzymatic hydrolysis of marine algae Hizikia fusiforme. KSBB J. 26: 347-351. https://doi.org/10.7841/ksbbj.2011.26.4.347
  18. The Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) Top value added chemicals from biomass, volume I - Results of screening for poten- tial candidates from sugars and synthesis gas. http://www.osti.gov/bridge (2004).
  19. Yeon, J. H., H. B. Seo, S. H. Oh, W. S. Choi, D. H. Kang, H. Y. Lee, and K. H. Jung (2010) Bioethanol production from hydrolysate of seaweed Sargassum sagamianum. KSBB J. 25: 283-288.

Cited by

  1. Bioethanol Production from Macroalgal Biomass vol.26, pp.8, 2016, https://doi.org/10.5352/JLS.2016.26.8.976
  2. Malonic acid를 이용한 전처리가 꼬시레기의 가수분해에 미치는 영향 vol.56, pp.4, 2015, https://doi.org/10.9713/kcer.2018.56.4.542
  3. Production of reducing sugar in Gracilaria verrucosa using physio-chemical pretreatment and subsequent enzymatic hydrolysis vol.60, pp.None, 2021, https://doi.org/10.1016/j.algal.2021.102531