초록
외관검사공정의 성능을 개선하기 위하여 기존의 자동외관검사장비 및 인간검사원에 추가하여 새로이 나이브 베이즈 분류기를 이용한 공정 구성을 개발하였다. 나이브 베이즈 분류기를 공정에 적용함으로써 불량의 유출 및 인간검사원의 작업량을 동시에 개선할 수 있다. 이때 분류기의 판정기준으로 기존의 MAP 방법 대신 AMPB 방법을 제안하여 적용하였다. 카메라모듈 용 필터 제품을 이용한 실험 결과 유출율 1.14%, 인간검사원 작업량 비율 75.5% 수준에서 공정을 구성하는 것이 가능함을 확인할 수 있었다. 본 연구의 결과는 검사 장비 및 인간이 협업을 하여 수행하는 타 공정 - 가스 누출 탐지 - 등에도 적용될 수 있다는 것에 넓은 범위에서의 의의가 있다.
In order to improve the performance of the visual inspection process, in addition to existing automatic visual inspection machine and human inspectors have developed a new process configuration using a Naive Bayes classifier. By applying the classifier, defect leakage and human inspector's work amount could be improved at the same time. New classification method called AMPB was applied instead of conventional methods based on MAP classification. By experimental results using the filter product for camera modules, it was confirmed that it is possible to configure the process at the level of leakage ratio 1.14% and human inspector's work amount ratio 75.5%. It is significant that the result can be applied in such a wide range as gas leak detection which is the collaboration process between inspection machine and human inspector's