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In this paper we study the transmission of the electrostatic field due to coulomb charges of an individual thundercloud 
into the midlatitude ionosphere, taking into account the total geomagnetic field integrated Pedersen conductivity of the 
ionosphere. It is shown that at ionospheric altitudes, a typical thundercloud produces an insignificant electrostatic field 
whereas a giant thundercloud can drive the horizontal electrostatic field with a magnitude of ~270 μV/m for nighttime 
conditions.
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1. INTRODUCTION

Thunderclouds are tropospheric sources of intense 

electrostatic fields and electromagnetic radiation. It is 

known that lightning-associated electric fields penetrate 

into the ionosphere; they have been observed in the E 

and F regions as transient electric fields with a typical 

duration of 10-20 ms and a magnitude of 1-50 mV/m (e.g., 

Kelley et al. 1985, 1990; Vlasov & Kelley 2009). According 

to the theoretical model of global atmospheric electricity 

developed by Hays & Roble (1979), the African array of 

multiple thunderclouds is responsible for the steady 

state electrostatic field of ~300 μV/m at ionospheric 

altitudes for nighttime conditions. The calculations by 

Park & Dejnakarintra (1973) showed that an isolated giant 

thundercloud could produce electrostatic fields of ~700 

μV/m in the nighttime midlatitude ionosphere. However, 

Park & Dejnakarintra (1973) neglected the ionospheric 

Pedersen conductivity above 150 km. The purpose of 

this study is to theoretically examine the mapping of 

electrostatic fields of coulomb charges of an individual 

thundercloud into the midlatitude ionosphere, taking into 

account the height-integrated Pedersen conductivities of 

both hemispheres. 

	

2. BASIC EQUATIONS

In the simplest thundercloud model, the electrical 

structure of a thundercloud is represented by two volume 

Coulomb charges of the same absolute value Q but opposite 

signs, with a positive charge in the upper part of the 

thundercloud and a negative charge in the lower part of the 

thundercloud (e.g., Chalmers 1967). Typical thunderclouds 

extend from 2-3 km to 8-12 km in altitude, and so-called 

giant thunderclouds extend above an altitude of 20 km 

(e.g., Uman 1969; Weisberg 1976). The magnitude of Q is 

estimated to range from 5 to 25 coulombs for the typical 

thunderclouds, whereas in giant thunderclouds, Q may 

exceed 50 coulombs (e.g., Malan 1963; Kasemir 1965). 

We use a cylindrical coordinate system (r, φ, z), in 

which the origin is placed at the earth’s surface and the 

z axis points upward and passes through the centers of 

thundercloud positive and negative volume charges. 
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The mapping of thundercloud electrostatic field into the 

ionosphere is studied following a similar formalism to 

that used by Park & Dejnakarintra (1973). In the steady 

state case, the electrostatic field distribution above the 

thundercloud is described by the following equations: 
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negative volume charges. The mapping of thundercloud electrostatic field into the ionosphere is 

studied following a similar formalism to that used by Park & Dejnakarintra (1973). In the steady state 

case, the electrostatic field distribution above the thundercloud is described by the following equations:  
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potential   can be obtained from (1), (2), and (3) :  
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where p is the Pedersen conductivity and 0 is the specific conductivity. The atmospheric 

conductivity below 70 km is isotropic since drifts of charged particles are not affected by the 

geomagnetic field.   

Equation (4) can be solved analytically if the conductivities 0 and p are exponential 

functions of z. In the case of isotropic conductivity (setting 0=p=b exp(z/h), where b and h are 

constants), we obtain 
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where subscripts e and i denote electrons and the ith ion species, Ne and Ni are the electron and ion 

densities, e is the electron charge, me and mi are the electron and ion masses, νe and  νi are the electron 
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below 40 km and by Swider (1988) from 40 to 70 km. In the 

anisotropic region between 70 and 90 km, 
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negative volume charges. The mapping of thundercloud electrostatic field into the ionosphere is 

studied following a similar formalism to that used by Park & Dejnakarintra (1973). In the steady state 

case, the electrostatic field distribution above the thundercloud is described by the following equations:  
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E = - ,                                                                                                                                            (3) 

 

where J is the electric current density,  is the electrical conductivity tensor, and E and  are the 

electrostatic field and potential, respectively. If we assume that the geomagnetic field B is vertical and 

the electrical conductivity tensor depends only on z, the following equation for the electrostatic 

potential   can be obtained from (1), (2), and (3) :  

 

∂2 /∂r2  +  (1/r)∂ /∂r  + (1/P)∂(0∂ /∂z)/∂z  =  0 ,                                                            (4) 

 

where p is the Pedersen conductivity and 0 is the specific conductivity. The atmospheric 

conductivity below 70 km is isotropic since drifts of charged particles are not affected by the 

geomagnetic field.   

Equation (4) can be solved analytically if the conductivities 0 and p are exponential 

functions of z. In the case of isotropic conductivity (setting 0=p=b exp(z/h), where b and h are 

constants), we obtain 
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where ⊥ denotes the gradient operator in the two dimensions transverse to B, the factor 2 before Ʃ p 

accounts for a contribution of the Pedersen conductivity of the magnetically conjugate ionosphere. 

Equation (9) is explicitly expressed as 
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z1)/h2] from 40 to 70 km (where z1=40 km) with the values of b1,2 and h1,2 to approximately fit the 

atmospheric conductivity models by Cole & Pierce (1965) below 40 km and by Swider (1988) from 40 

to 70 km. In the anisotropic region between 70 and 90 km, 0, and p are exponentially extrapolated 
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where subscripts e and i denote electrons and the ith ion species, Ne and Ni are the electron and ion 

densities, e is the electron charge, me and mi are the electron and ion masses, νe and  νi are the electron 

and ion momentum transfer collision frequencies, and ωe and ωi are the electron and ion 

gyrofrequencies, respectively.  The frequencies νe and νi are from Schunk (1988). The required input 

parameters are taken from the empirical ionospheric model IRI-2012 

(http://omniweb.gsfc.nasa.gov/vitmo/iri2012_vitmo.html) and the neutral atmosphere model 

NRLMSIS-00 (http://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php). 
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where J0 is the zero-order Bessel function of the first kind, A1 and B1 are coefficients, and c1= -l/(2h) - 

[l/(4h2)+k2]1/2, c2= -l/(2h) + [l/(4h2)+k2]1/2. For the anisotropic region, where we let 0 = b0 exp(z/h0) 

and p = bp exp(z/hp), the solution to Equation (4) is 
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The electrostatic field components are given by 
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Ez = -∂Φ/∂z.                                                                                                                                            (8) 

 

Since the geomagnetic field B is assumed to be vertical, Er is perpendicular to B, while Ez is parallel to 

B.  

 Above 90 km, the geomagnetic field lines are practically equipotential because the 

geomagnetic field aligned conductivity 0 is much higher than the transverse conductivity p. It allows 

us to consider the ionospheric region above 90 km as a thin conducting layer with a geomagnetic field 

line integrated Pedersen conductivity Ʃ p, and the continuity equation of electric current at z=90 km 

takes the following form:  
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 Our calculations show that during solar minimum, in Equinox, the magnitude of Ʃ p at middle 

latitudes is commonly in the ranges of 5.0-8.0 S and 0.1-0.2 S for day and night, respectively. 

However, the nighttime Ʃ p can be as low as 0.05 S. Under solar maximum conditions, Ʃ p is several 

times larger than in solar minimum. 
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where ε0 is the vacuum permittivity, zb is the altitude of the plane setting directly above the 

thundercloud top, and hp and hn are the altitudes of positive and negative charge centers of the 

thundercloud, respectively. The first boundary condition follows from the accepted electrical model of 

the thundercloud. We assume that the thundercloud does not affect the atmospheric conductivity at 

z≥zb.  

Fig. 2 shows the computed electrostatic field component Er normalized to Q as a function of r 

in the nighttime and daytime midlatitude ionosphere at z≥90 km for the typical thundercloud (zb=10 

km, hn=3 km, hp=8 km) and for the giant thundercloud (zb=20 km, hn=5 km, hp=17 km). Solar 

minimum conditions are considered with Ʃ p=0.05 S at night and Ʃ p=5.0 S by day. All curves show 

similar behavior, attaining first a maximum and then revealing a gradual lowering. At night, the 

thundercloud electrostatic field is transmitted into the ionosphere much better than during the daytime. 

For a typical thundercloud, Er reaches its nighttime maximum value of ~2.6 μV/m (for Q=25 

�

 

7 
 

7 

 Our calculations show that during solar minimum, in Equinox, the magnitude of Ʃ p at middle 

latitudes is commonly in the ranges of 5.0-8.0 S and 0.1-0.2 S for day and night, respectively. 

However, the nighttime Ʃ p can be as low as 0.05 S. Under solar maximum conditions, Ʃ p is several 

times larger than in solar minimum. 

 

3. RESULTS AND DISCUSSION 

 

 To compute the electrostatic potential above the thundercloud from (5) and (6), we impose the 

following boundary conditions: 

 

1.  Φ=(Q/4πε 0)[(r2+(zb -h p )2) - 1 / 2 -(r 2+(zb -h n)2) - 1 / 2]                           at  z=zb  

2.    is continuous                                                                                        at  z=40 km 

3.  0  ∂ /∂z=2Ʃ p  (∂2 /∂r 2+1/r  ∂ /∂r)  ,                                      at  z=90 km 

 

where ε0 is the vacuum permittivity, zb is the altitude of the plane setting directly above the 

thundercloud top, and hp and hn are the altitudes of positive and negative charge centers of the 

thundercloud, respectively. The first boundary condition follows from the accepted electrical model of 

the thundercloud. We assume that the thundercloud does not affect the atmospheric conductivity at 

z≥zb.  

Fig. 2 shows the computed electrostatic field component Er normalized to Q as a function of r 

in the nighttime and daytime midlatitude ionosphere at z≥90 km for the typical thundercloud (zb=10 

km, hn=3 km, hp=8 km) and for the giant thundercloud (zb=20 km, hn=5 km, hp=17 km). Solar 

minimum conditions are considered with Ʃ p=0.05 S at night and Ʃ p=5.0 S by day. All curves show 

similar behavior, attaining first a maximum and then revealing a gradual lowering. At night, the 

thundercloud electrostatic field is transmitted into the ionosphere much better than during the daytime. 

For a typical thundercloud, Er reaches its nighttime maximum value of ~2.6 μV/m (for Q=25 

 

7 
 

7 

 Our calculations show that during solar minimum, in Equinox, the magnitude of Ʃ p at middle 

latitudes is commonly in the ranges of 5.0-8.0 S and 0.1-0.2 S for day and night, respectively. 

However, the nighttime Ʃ p can be as low as 0.05 S. Under solar maximum conditions, Ʃ p is several 

times larger than in solar minimum. 

 

3. RESULTS AND DISCUSSION 

 

 To compute the electrostatic potential above the thundercloud from (5) and (6), we impose the 

following boundary conditions: 

 

1.  Φ=(Q/4πε 0)[(r2+(zb -h p )2) - 1 / 2 -(r 2+(zb -h n)2) - 1 / 2]                           at  z=zb  

2.    is continuous                                                                                        at  z=40 km 

3.  0  ∂ /∂z=2Ʃ p  (∂2 /∂r 2+1/r  ∂ /∂r)  ,                                      at  z=90 km 

 

where ε0 is the vacuum permittivity, zb is the altitude of the plane setting directly above the 

thundercloud top, and hp and hn are the altitudes of positive and negative charge centers of the 

thundercloud, respectively. The first boundary condition follows from the accepted electrical model of 

the thundercloud. We assume that the thundercloud does not affect the atmospheric conductivity at 

z≥zb.  

Fig. 2 shows the computed electrostatic field component Er normalized to Q as a function of r 

in the nighttime and daytime midlatitude ionosphere at z≥90 km for the typical thundercloud (zb=10 

km, hn=3 km, hp=8 km) and for the giant thundercloud (zb=20 km, hn=5 km, hp=17 km). Solar 
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 Our calculations show that during solar minimum, in Equinox, the magnitude of Ʃ p at middle 
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where J0 is the zero-order Bessel function of the first kind, A1 and B1 are coefficients, and c1= -l/(2h) - 

[l/(4h2)+k2]1/2, c2= -l/(2h) + [l/(4h2)+k2]1/2. For the anisotropic region, where we let 0 = b0 exp(z/h0) 

and p = bp exp(z/hp), the solution to Equation (4) is 
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where Jν and Kν  are the ν-order modified Bessel functions of the first and the second kind, respectively, 

and  A2 and B2 are coefficients, ν=hp/( hp- h0), f=2νh0(bp/ b0)1/2 exp[-z/(2 νh0)]. 

The coefficients A1, B1, A2, and B2 are determined from the boundary conditions. 

The electrostatic field components are given by 

 

Er = -∂Φ/∂r,                                                                                                                                            (7) 

Ez = -∂Φ/∂z.                                                                                                                                            (8) 

 

Since the geomagnetic field B is assumed to be vertical, Er is perpendicular to B, while Ez is parallel to 

B.  

 Above 90 km, the geomagnetic field lines are practically equipotential because the 

geomagnetic field aligned conductivity 0 is much higher than the transverse conductivity p. It allows 

us to consider the ionospheric region above 90 km as a thin conducting layer with a geomagnetic field 

line integrated Pedersen conductivity Ʃ p, and the continuity equation of electric current at z=90 km 

takes the following form:  

 

0 Ez = ⊥·(2Ʃ p E⊥),                                                                                                                           (9) 
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=5.0 

S by day. All curves show similar behavior, attaining first a 

maximum and then revealing a gradual lowering. At night, 

the thundercloud electrostatic field is transmitted into the 

ionosphere much better than during the daytime. For a typical 

thundercloud, E
r
 reaches its nighttime maximum value of ~2.6 

μV/m (for Q=25 coulombs) at r~35 km. In the case of the giant 

thundercloud, the nighttime maximum magnitude of E
r
 is 

~270 μV/m (for Q=50 coulombs) and r
max

~40 km. The daytime 

maximum values of E
r
 are one order of magnitude less than 

their nighttime values. Thus, the steady state electrostatic 

fields associated with the individual typical thunderclouds 

have very small magnitudes at ionospheric altitudes. In the 

case of a giant thundercloud, E
r
 is two orders of magnitude 

larger. Note that Park & Dejnakarintra (1973) discovered that 

the maximum magnitude of the transverse electrostatic field 

produced in the nighttime midlatitude ionosphere by a giant 

thundercloud with Q=50 coulombs can be as large as ~700 

μV/m, which is about 2.6 times more than in our estimate.  

This difference can mainly be attributed to the fact that Park 

& Dejnakarintra (1973) ignored the Pedersen conductivity 

above 150 km.

Fig. 2. Calculated magnitude of the thundercloud electrostatic field 
strength Er normalized to Q, as a function of r, at ionospheric altitudes z≥90 
km for the typical and giant thundercloud at night and by day.
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4. CONCLUSION

Our computations show that the geomagnetic field line 

integrated Pedersen conductivity of the ionosphere plays 

an important role in troposphere-ionosphere electrostatic 

coupling. Even for nighttime conditions in solar minimum, 

when the values of 
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 Above 90 km, the geomagnetic field lines are practically equipotential because the 

geomagnetic field aligned conductivity 0 is much higher than the transverse conductivity p. It allows 

us to consider the ionospheric region above 90 km as a thin conducting layer with a geomagnetic field 

line integrated Pedersen conductivity Ʃ p, and the continuity equation of electric current at z=90 km 
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 are minimal, the electrostatic charges 

of the individual thundercloud can drive only small 

electrostatic fields at ionospheric altitudes.

ACKNOWLEDGEMENTS 

This work was supported by Russian Academy of Sciences 

through Atmospheric Electrodynamics program (project 

No. 12).

REFERENCES

Chalmers JA, Atmospheric electricity (Pergamon, New York, 

1967), 309-342.

Cole Jr. RK, Pierce ET, Electrification in the Earth's atmosphere 

for altitudes between 0 and 100 kilometers, J. Geophys. 

Res. 70, 2735-2749 (1965). http://dx.doi.org/10.1029/

JZ070i012p02735

Hays PB, Roble RG, A quasi-static model of global atmospheric 

electricity, 1. The lower atmosphere, J. Geophys. Res. 

84, 3291-3305 (1979). http://dx.doi.org/10.1029/

JA084iA07p03291

Kasemir HW, The thundercloud, in Problems of Atmospheric 

and Space Electricity, ed. Coroniti SC (Elsevier, New York, 

1965), 215-235.

Kelley MC, Siefring CL, Pfaff RF, Kintner PM, Larsen M, et.al., 

Electrical measurements in the atmosphere and the 

ionosphere over an active thunderstorm: 1. Campaign 

overview and initial ionospheric results, J. Geophys. 

Res. 90, 9815-9823 (1985). http://dx.doi.org/10.1029/

JA090iA10p09815

Kelley MC, Ding JG, Holzworth RH, Intense ionospheric 

electric and magnetic field pulses generated by lightning, 

Geophys. Res. Lett. 17, 2221-2224 (1990). http://dx.doi.

org/10.1029/GL017i012p02221

Malan DJ, Physics of Lightning (The English Universities Press, 

1963), 23-37.

Park CG, Dejnakarintra M, Penetration of thundercloud 

electric fields into the ionosphere and magnetosphere: 1. 

Middle and subauroral latitudes, J. Geophys. Res. 78, 6623-

6633 (1973). http://dx.doi.org/10.1029/JA078i028p06623

Schunk RW, A mathematical model of the middle and high 

latitude ionosphere, Pure Appl. Geophys. 127, 255-303 

(1988). http://dx.doi.org/10.1007/BF00879813

Swider W, Ionic mobility, mean mass, and conductivity in 

the middle atmosphere from near ground level to 70 km, 

Radio Sci. 23, 389-399 (1988). http://dx.doi.org/10.1029/

RS023i003p00389

Uman MA, Lightning (McGraw-Hill, New York, 1969), 10-35.

Vlasov MN, Kelley MC, Electron heating and airglow 

emission due to lightning effects on the ionosphere, 

J. Geophys. Res. 114, A00E06 (2009). http://dx.doi.

org/10.1029/2008JA013922

Weisberg JS, Meteorology: The Earth and Its Weather 

(Houghton Mifflin, Boston, 1976), 107-122.


