References
- Abdalla, H.M. and Karihaloo, B.L. (2003), "Determination of size-independent specific fracture energy of concrete from three-point bend and wedge splitting tests", Mag. Concrete Res., 55, 133-141. https://doi.org/10.1680/macr.2003.55.2.133
- Abdalla, H.M. and Karihaloo, B.L. (2004), "A method for constructing the bilinear tension softening diagram of concrete corresponding to its true fracture energy", Mag. Concrete Res., 56, 597-604. https://doi.org/10.1680/macr.2004.56.10.597
- Bazant, Z.P. and Kazemi, M.T. (1991), "Size dependence of concrete fracture energy determined by RILEM work-of-fracture method", Int. J. Fract., 51, 121-138.
- Bazant, Z.P. (1996), "Analysis of work-of-fracture method for measuring fracture energy of concrete", ASCE J. Mater. Civil Eng., 122, 138-144.
- Carpinteri, A. and Chiaia, B. (1996), "Size effects on concrete fracture energy: dimensional transition from order to disorder", Mater. Struct. 29, 259-266. https://doi.org/10.1007/BF02486360
- Cifuentes, H., Alcalde, M. and Medina, F. (2013), "Measuring the size independent fracture energy of concrete", Strain, 49, 54-59. https://doi.org/10.1111/str.12012
-
Elices, M., Guinea, G.V. and Planas, J. (1992), "Measurement of the fracture energy using three-point bend tests: part 3-Influence of cutting the P-
$\delta$ tail", Mater. Struct., 25, 137-163. https://doi.org/10.1007/BF02472426 - Karihaloo, B.L., Abdalla, H.M. and Imjai, T. (2003), "A simple method for determining the true specific fracture energy of concrete", Mag. Concrete Res., 55, 471-481. https://doi.org/10.1680/macr.2003.55.5.471
- Guinea, G.V., Planas, J. and Elices, M. (1992), "Measurement of the fracture energy using three-point bend tests: part 1-Influence of experimental procedures", Mater. Struct., 25, 212-218. https://doi.org/10.1007/BF02473065
- Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7
- Hu, X. and Wittmann, F. (1992), "Fracture energy and fracture process zone", Mater. Struct. 25, 319-326. https://doi.org/10.1007/BF02472590
- Hu, X. and Wittmann, F. (2000), "Size effect on toughness induced by crack close to free surface", Eng. Fract. Mech., 65, 209-221. https://doi.org/10.1016/S0013-7944(99)00123-X
- Jalal, M. (2014), "Corrosion resistant self-compacting concrete using micro and Nano silica admixtures". Struct. Eng. Mech., 51, 403-412. https://doi.org/10.12989/sem.2014.51.3.403
- Karihaloo, B.L. (1995), Fracture Mechanics and Structural Concrete, Addison Wesley Longman, UK.
- Mindess, S. (1984), "The effect of specimen size on the fracture energy of concrete", Cement Concrete Res., 14, 431-436. https://doi.org/10.1016/0008-8846(84)90062-0
- Nallathambi, P., Karihaloo, B.L. and Heaton, B.S. (1985), "Various size effects in fracture of concrete", Cement Concrete Res., 15, 117-126. https://doi.org/10.1016/0008-8846(85)90016-X
- Olesen, J.F. (2001), "Fictitious crack propagation in fiber-reinforced concrete beams", J. Eng. Mech., ASCE, 127, 272-280. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:3(272)
- Ostergaard, L. (2003), "Early-age fracture mechanics and cracking of concrete", PhD Thesis, The Technical University of Denmark, Lyngby.
- Pacheco-Torgal, F. and Jalali, S. (2011), "Nanotechnology: Advantages and drawbacks in the field of construction and building materials UK", Constr. Build. Mater., 25, 582-590. https://doi.org/10.1016/j.conbuildmat.2010.07.009
- Pan, Z. (2011), "Fracture properties of geopolymer paste and concrete", Mag. Concrete Res., 63, 763-771. https://doi.org/10.1680/macr.2011.63.10.763
- Planas, J., Elices, M. and Guinea, G.V. (1992), "Measurement of the fracture energy using three-point bend tests: part 2-Influence of bulk energy dissipation", Mater. Struct., 25, 305-312. https://doi.org/10.1007/BF02472671
- Ramachandra Murthy, A., Karihaloo, B.L., Iyer, N.R. and Raghu Prasad, B.K. (2013), "Determination of Size-independent specific fracture energy of concrete mixes by two methods", Cement Concrete Res., 50, 19-25 https://doi.org/10.1016/j.cemconres.2013.03.015
- RILEM TCM-85 (1985), "Determination of the fracture energy of mortar and concrete by means of threepoint bend tests on notched beams", Mater. Struct., 18, 287-290. https://doi.org/10.1007/BF02472918
- Sahin, Y. and Koksal, F. (2011), "The influences of matrix and steel fibre tensile strengths on the fracture energy of high strength concrete", Constr. Build. Mater., 25, 1801-1806. https://doi.org/10.1016/j.conbuildmat.2010.11.084
- Said, A.M., Zeidan, M.S., Bassuoni, M.T. and Tian, Y. (2012), "Properties of concrete incorporating nanosilica", Constr. Build. Mater., 36, 838-844. https://doi.org/10.1016/j.conbuildmat.2012.06.044
- Sanchez, F. and Sobolev, K. (2010), "Nanotechnology in concrete-A review", Constr. Build. Mater., 24, 2060-2071. https://doi.org/10.1016/j.conbuildmat.2010.03.014
- Singh, L.P., Karade, S.R., Bhattacharyya, S.K., Yousuf, M.M. and Ahalawat, S. (2013), "Beneficial role of nanosilica in cement based materials-A review", Constr. Build. Mater., 47, 1069-1077. https://doi.org/10.1016/j.conbuildmat.2013.05.052
- Stang, H. and Olesen, J.F. (1998), "On the interpretation of bending tests on FRC-materials", Proceedings of the FRAMCOS-3, Fracture Mechanics of Concrete Structures, Aedificatio Publishers, Freiburg, Germany.
- Tabatabaei, R., Sanjari, H.R. and Shamsadini, M. (2014), "The use of artificial neural networks in predicting ASR of concrete containing Nano-silica", Comput Concrete, 13, 739-748. https://doi.org/10.12989/cac.2014.13.6.739
- Tada, H., Paris, P.C. and Irwin, G.R. (1985), The Stress Analysis of Cracks Handbook, 2nd Edition, St. Louis MO, Paris Productions.
- Ulfkjaer, J.P., Krenk, S. and Brincker, R. (1995), "Analytical model for fictitious crack propagation in concrete beams", J Eng Mech., ASCE, 121(1), 7-15. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:1(7)
- Vydra, V., Trtik, K. and Vodak, F. (2012), "Size independent fracture energy of concrete", Constr. Build. Mater., 26, 357-361. https://doi.org/10.1016/j.conbuildmat.2011.06.034
-
Zhang, P, Liu, C.H., Li, Q.F., Zhang, T.H. and Wang, P. (2014), "Fracture properties of steel fibre reinforced high-performance concrete containing nano-
$SiO_2$ and fly ash", Current Sci., 106(7), 980.
Cited by
- Size and boundary effects on notch tensile strength and fracture properties of PMMA bone cement vol.59, 2017, https://doi.org/10.1016/j.polymertesting.2017.02.018
- The continuous-discontinuous Galerkin method applied to crack propagation vol.23, pp.4, 2015, https://doi.org/10.12989/cac.2019.23.4.235
- Effect of steel fibres and nano silica on fracture properties of medium strength concrete vol.7, pp.3, 2015, https://doi.org/10.12989/acc.2019.7.3.143
- Mechanical, durability and fracture properties of nano-modified FA/GGBS geopolymer mortar vol.72, pp.4, 2015, https://doi.org/10.1680/jmacr.18.00059
- Numerical Simulation on Size Effect of Fracture Toughness of Concrete Based on Mesomechanics vol.13, pp.6, 2015, https://doi.org/10.3390/ma13061370
- Effects of UEA and MgO expansive agents on fracture properties of concrete vol.263, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2020.120245
- Effect of medium coarse aggregate on fracture properties of ultra high strength concrete vol.77, pp.1, 2015, https://doi.org/10.12989/sem.2021.77.1.103