DOI QR코드

DOI QR Code

A novel harmony search based optimization of reinforced concrete biaxially loaded columns

  • 투고 : 2014.09.12
  • 심사 : 2015.03.13
  • 발행 : 2015.06.25

초록

A novel optimization approach for reinforced concrete (RC) biaxially loaded columns is proposed. Since there are several design constraints and influences, a new computation methodology using iterative analyses for several stages is proposed. In the proposed methodology random iterations are combined with music inspired metaheuristic algorithm called harmony search by modifying the classical rules of the employed algorithm for the problem. Differently from previous approaches, a detailed and practical optimum reinforcement design is done in addition to optimization of dimensions. The main objective of the optimization is the total material cost and the optimization is important for RC members since steel and concrete are very different materials in cost and properties. The methodology was applied for 12 cases of flexural moment combinations. Also, the optimum results are found by using 3 different axial forces for all cases. According to the results, the proposed method is effective to find a detailed optimum result with different number of bars and various sizes which can be only found by 2000 trial of an engineer. Thus, the cost economy is provided by using optimum bars with different sizes.

키워드

과제정보

연구 과제 주관 기관 : Gachon University

참고문헌

  1. ACI 318M-05 (2005), "Building code requirements for structural concrete and commentary", American Concrete Institute.
  2. Akin, A. and Saka, M.P. (2010), "Optimum Detailed Design of Reinforced Concrete Continuous Beams using the Harmony Search Algorithm", Eds. B.H.V. Topping, J.M. Adam, F.J. Pallares, R. Bru, M.L. Romero, Proceedings of the Tenth International Conference on Computational Structures Technology, Civil-Comp Press, Stirlingshire, UK.
  3. Akin, A. and Saka, M.P. (2012), "Optimum detailing design of reinforced concrete plane frames to ACI 318-05 using the harmony search algorithm", Ed. B.H.V. Topping, Proceedings of the Eleventh International Conference on Computational Structures Technology, Civil-Comp Press, Stirlingshire, UK.
  4. Bekdas, G. and Nigdeli, S.M. (2011), "Estimating optimum parameters of tuned mass dampers using harmony search", Eng. Struct., 33, 2716-2723. https://doi.org/10.1016/j.engstruct.2011.05.024
  5. Bekdas, G. and Nigdeli, S.M. (2012), "Cost optimization of T-shaped reinforced concrete beams under flexural effect according to ACI 318", Proceedings of the 3rd European Conference of Civil Engineering, Paris, France, December.
  6. Bekdas, G. and Nigdeli, S.M. (2014), "Optimization of slender reinforced concrete columns", Proceedings of the 85th Annual Meeting of the International Association of Applied Mathematics and Mechanics, Erlangen, Germany, March.
  7. Bekdas, G. (2014), "Optimum design of axially symmetric cylindrical reinforced concrete walls", Struct. Eng. Mech., 51(3), 361-375. https://doi.org/10.12989/sem.2014.51.3.361
  8. Bekdas, G. (2015), "Harmony search algorithm approach for optimum design of post-tensioned axially symmetric cylindrical reinforced concrete walls", J. Optim. Theo. Appl., 164, 342-358. https://doi.org/10.1007/s10957-014-0562-2
  9. Camp, C.V. and Akin, A. (2012), "Design of retaining walls using big bang-big crunch optimization", J. Struct. Eng., ASCE, 138(3), 438-448. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000461
  10. Camp, C.V. and Huq, F. (2013), "$CO_2$ and cost optimization of reinforced concrete frames using a big bangbig crunch algorithm", Eng. Struct., 48, 363-372. https://doi.org/10.1016/j.engstruct.2012.09.004
  11. Camp, C.V., Pezeshk, S. and Hansson, H. (2003), "Flexural design of reinforced concrete frames using a genetic algorithm", J. Struct. Eng., ASCE, 129, 105-115. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:1(105)
  12. Degertekin, S.O. (2012), "Improved harmony search algorithms for sizing optimization of truss structures", Comput. Struct., 92-93, 229-241. https://doi.org/10.1016/j.compstruc.2011.10.022
  13. Erdal, F., Dogan, E. and Saka, M.P. (2011), "Optimum design of cellular beams using harmony search and particle swarm optimizers", J. Construct. Steel Res., 67(2), 237-247. https://doi.org/10.1016/j.jcsr.2010.07.014
  14. Fedghouche, F. and Tiliouine, B. (2012), "Minimum cost design of reinforced concrete T-beams at ultimate loads using Eurocode2", Eng. Struct., 42, 43-50. https://doi.org/10.1016/j.engstruct.2012.04.008
  15. Geem, Z.W. (2008), "Novel derivative of harmony search algorithm for discrete design variables", Appl. Math. Comput., 199, 223-230. https://doi.org/10.1016/j.amc.2007.09.049
  16. Geem, Z.W., Kim, J.H. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: harmony search", Simulation, 76, 60-68. https://doi.org/10.1177/003754970107600201
  17. Gholipour, Y., Shahbazi, M.M. and Behnia, A. (2013), "An improved version of inverse distance weighting metamodel assisted harmony search algorithm for truss design optimization", Lat. Am. J. Solid. Struct., 10(2), 283-300. https://doi.org/10.1590/S1679-78252013000200004
  18. Govindaraj, V. and Ramasamy, J.V. (2005), "Optimum detailed design of reinforced concrete continuous beams using genetic algorithms", Comput. Struct., 84, 34-48. https://doi.org/10.1016/j.compstruc.2005.09.001
  19. Govindaraj, V. and Ramasamy, J.V. (2007), "Optimum detailed design of reinforced concrete frames using genetic algorithms", Eng. Optim., 39(4), 471-494. https://doi.org/10.1080/03052150601180767
  20. Kaveh, A. and Abadi, A.S.M. (2011), "Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls", Int. J. Civil Eng., 9(1), 1-8.
  21. Kaveh, A. and Sabzi, O. (2011), "A comparative study of two meta-heuristic algorithms for optimum design of reinforced concrete frames", Int. J. Civil Eng., 9(3), 193-206.
  22. Kaveh, A. and Sabzi, O. (2012), "Optimal design of reinforced concrete frames using big bang-big crunch algorithm", Int. J. Civil Eng., 10(3), 189-200.
  23. Kayhan, A.H. (2012), "Selection and scaling of ground motion records using harmony search", Teknik Dergi, 23(1), 5751-5775.
  24. Lee, C. and Ahn, J. (2003), "Flexural design of reinforced concrete frames by genetic algorithm", J. Struct. Eng., ASCE, 129(6), 762-774. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:6(762)
  25. Lee, K.S. and Geem, Z.W. (2005), "A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and practice", Comput. Meth. Appl. Mech. Eng., 194, 3902-3933. https://doi.org/10.1016/j.cma.2004.09.007
  26. Lee, K.S., Geem, Z.W., Lee, S.H. and Bae, K.W. (2005), "The harmony search heuristic algorithm for discrete structural optimization", Eng. Optim., 37, 663-684. https://doi.org/10.1080/03052150500211895
  27. Leps, M. and Sejnoha, M. (2003), "New approach to optimization of reinforced concrete beams", Comput. Struct., 81, 1957-1966. https://doi.org/10.1016/S0045-7949(03)00215-3
  28. Li, G., Lu, H. and Liu, X. (2010), "A hybrid simulated annealing and optimality criteria method for optimum design of RC buildings", Struct. Eng. Mech., 35(1), 19-35. https://doi.org/10.12989/sem.2010.35.1.019
  29. Martinez-Martin, F., Gonzalez-Vidosa, F., Hospitaler, A. and Yepes, V. (2013), "A parametric study of optimum tall piers for railway bridge viaducts", Struct. Eng. Mech., 45(6), 723-740. https://doi.org/10.12989/sem.2013.45.6.723
  30. Martini, K. (2011), "Harmony search method for multimodal size, shape, and topology optimization of structural frameworks", J. Struct. Eng., ASCE, 137(11), 1332-1339. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000378
  31. Paya, I., Yepes, V.,Gonzalez-Vidosa, F. and Hospitaler, A. (2008), "Multiobjective optimization of concrete frames by simulated annealing", Comput. Aid. Civil Inf., 23, 596-610. https://doi.org/10.1111/j.1467-8667.2008.00561.x
  32. Paya-Zaforteza, I., Yepes, V., Hospitaler, A. and Gonzalez-Vidosa F. (2009), "$CO_2$-optimization of reinforced concrete frames by simulated annealing", Eng. Struct., 31, 1501-1508. https://doi.org/10.1016/j.engstruct.2009.02.034
  33. Perea, C., Alcala, J., Yepes, V., Gonzalez-Vidosa, F. and Hospitaler, A. (2008), "Design of reinforced concrete bridge frames by heuristic optimization", Adv. Eng. Softw., 39, 676-688. https://doi.org/10.1016/j.advengsoft.2007.07.007
  34. Sahab, M.G., Ashour, A.F and Toropov, V.V. (2005), "Cost optimisation of reinforced concrete flat slab buildings", Eng. Struct., 27, 313-322. https://doi.org/10.1016/j.engstruct.2004.10.002
  35. Talatahari, S., Sheikholeslami, R., Shadfaran, M. and Pourbaba, M. (2012), "Optimum design of gravity retaining walls using charged system search algorithm", Math. Prob. Eng., 2012, 1-10.
  36. Togan, V., Daloglu, A.T. and Karadeniz, H. (2011), "Optimization of Trusses under Uncertainties with Harmony Search", Struct. Eng. Mech., 37(5), 543-560. https://doi.org/10.12989/sem.2011.37.5.543
  37. Yepes, V., Alcala, J., Perea, C. and Gonzalez-Vidosa, F. (2008), "A parametric study of optimum earthretaining walls by simulated annealing", Eng. Struct., 30, 821-830. https://doi.org/10.1016/j.engstruct.2007.05.023

피인용 문헌

  1. Truss optimization with dynamic constraints using UECBO vol.1, pp.2, 2016, https://doi.org/10.12989/acd.2016.1.2.119
  2. Heuristics in optimal detailed design of precast road bridges vol.17, pp.4, 2017, https://doi.org/10.1016/j.acme.2017.02.006
  3. On the progressive collapse resistant optimal seismic design of steel frames vol.60, pp.5, 2016, https://doi.org/10.12989/sem.2016.60.5.761
  4. Optimal design of double layer barrel vaults considering nonlinear behavior vol.58, pp.6, 2016, https://doi.org/10.12989/sem.2016.58.6.1109
  5. Metaheuristic Optimization of Reinforced Concrete Footings pp.1976-3808, 2018, https://doi.org/10.1007/s12205-018-2010-6
  6. Multi-objective colliding bodies optimization algorithm for design of trusses vol.6, pp.1, 2015, https://doi.org/10.1016/j.jcde.2018.04.001
  7. An algorithm for simulation of cyclic eccentrically-loaded RC columns using fixed rectangular finite elements discretization vol.23, pp.1, 2015, https://doi.org/10.12989/cac.2019.23.1.025
  8. Comparative Study of Harmony Search Algorithm and its Applications in China, Japan and Korea vol.10, pp.11, 2015, https://doi.org/10.3390/app10113970
  9. Optimization and buckling of rupture building beams reinforced by steel fibers on the basis of adaptive improved harmony search-harmonic differential quadrature methods vol.15, pp.None, 2021, https://doi.org/10.1016/j.cscm.2021.e00647
  10. Optimum Design of Reinforced Concrete T-Beam Considering Environmental Factors via Flower Pollination Algorithm vol.13, pp.4, 2021, https://doi.org/10.24107/ijeas.1037908