DOI QR코드

DOI QR Code

A review of the application of acoustic emission technique in engineering

  • Gholizadeh, S. (Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia) ;
  • Leman, Z. (Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia) ;
  • Baharudin, B.T.H.T. (Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia)
  • 투고 : 2014.09.30
  • 심사 : 2015.02.23
  • 발행 : 2015.06.25

초록

The use of acoustic emission (AE) technique for detecting and monitoring damages and the progress on damages in different structures is widely used and has earned a reputation as one of the most reliable and well-established technique in non-destructive testing (NDT). Acoustic Emission is a very efficient and effective technology used for fracture behavior and fatigue detection in metals, fiberglass, wood, composites, ceramics, concrete and plastics. It can also be used for detecting faults and pressure leaks in vessels, tanks, pipes, as well as for monitoring the progression of corrosion in welding. This paper reviews major research developments over the past few years in application of acoustic emission in numerous engineering fields, including manufacturing, civil, aerospace and material engineering.

키워드

참고문헌

  1. Acha, B.A., Marcovich, N.E. and Karger-Kocsis, J. (2006), "Biodegradable jute cloth reinforced thermoplastic copolyester composites: fracture and failure behavior", Plast. Rub. Compos., 35(2), 73-82. https://doi.org/10.1179/174328906X79978
  2. Aggelis, D., Kordatos, E. and Matikas, T. (2011), "Acoustic emission for fatigue damage characterization in metal plates", Mech. Res. Commun., 38(2), 106-110. https://doi.org/10.1016/j.mechrescom.2011.01.011
  3. Aggelis, D. and Matikas, T. (2012), "Effect of plate wave dispersion on the acoustic emission parameters in metals", Comput. Struct., 98, 17-22.
  4. Aggelis, D., Verbruggen, S., Tsangouri, E., Tysmans, T. and Van Hemelrijck, D. (2013), "Characterization of mechanical performance of concrete beams with external reinforcement by acoustic emission and digital image correlation", Construct. Build. Mater., 47, 1037-1045. https://doi.org/10.1016/j.conbuildmat.2013.06.005
  5. Aggelis, D.G. (2011), "Classification of cracking mode in concrete by acoustic emission parameters", Mech. Res. Commun., 38(3), 153-157. https://doi.org/10.1016/j.mechrescom.2011.03.007
  6. Aggelis, D.G., Shiotani, T., Momoki, S. and Hirama, A. (2009), "Acoustic emission and ultrasound for damage characterization of concrete elements", ACI Mater. J., 106(6), 509-514.
  7. Ai, Q., Liu, C.X., Chen, X.R., He, P. and Wang, Y. (2010), "Acoustic emission of fatigue crack in pressure pipe under cyclic pressure", Nucl. Eng. Des., 240(10), 3616-3620. https://doi.org/10.1016/j.nucengdes.2010.05.022
  8. Aicher, S., Hofflin, L. and Dill-Langer, G. (2001), "Damage evolution and acoustic emission of wood at tension perpendicular to fiber", Euro. J. Wood Wood Prod., 59(1), 104-116. https://doi.org/10.1007/s001070050482
  9. Aker, E., Kuhn, D., Vavrycuk, V., Soldal, M. and Oye, V. (2014), "Experimental investigation of acoustic emissions and their moment tensors in rock during failure", Int. J. Rock Mech. Min. Sci., 70, 286-295.
  10. Anuar, H., Ahmad, S., Rasid, R., Surip, S., Czigany, T. and Romhany, G. (2007), "Essential work of fracture and acoustic emission study on TPNR composites reinforced by kenaf fiber", J. Compos. Mater., 41(25), 3035-3049. https://doi.org/10.1177/0021998307082173
  11. Arul, S., Vijayaraghavan, L. and Malhotra, S. K. (2007), "Online monitoring of acoustic emission for quality control in drilling of polymeric composites", J. Mater. Proc. Tech., 185(1-3), 184-190. https://doi.org/10.1016/j.jmatprotec.2006.03.114
  12. Asakawa, T. and Peregoy, C.F. (1965), Manufacturing Technology for Large Monolithic Fiberglass Reinforced Plastic Rocket Motor Case, Volume I: Basic Text: Defense Technical Information Center.
  13. ASTM E1316 (2014), Standard Terminology for Nondestructive Examinations, West Conshohocken, ASTM International.
  14. Aymerich, F. and Staszewski, W. (2010), "Experimental study of impact-damage detection in composite laminates using a cross-modulation vibro-acoustic technique", Struct. Hlth. Monit., doi: 10.1177/1475921710365433.
  15. Barber, G. (2006), "An overview Of NDT technologies and systems", Proceedings of the Asia-Pacific Conference on NDT, 5th, Auckland, New Zealand.
  16. Benevolenski, O. and Karger-Kocsis, J. (2001), "Fracture and failure behavior of partially consolidated ciscontinuous glass fiber mat?reinforced polypropylene composites (Azdel SuperLite(R))", Paper presented at the Macromolecular Symposia.
  17. Boehnlein, T., Fox, J., Frock, B., Klosterman, E. and Ko, R. (2004), "Research on Advanced Nondestructive Evaluation (NDE) Methods for Aerospace Structures", DTIC Document.
  18. Boschetto, A. and Quadrini, F. (2011), "Powder size measurement by acoustic emission", Measurement, 44(1), 290-297. https://doi.org/10.1016/j.measurement.2010.10.005
  19. Brepta, R., Vales, F., Cerv, J. and Tikal, B. (1996), "Rayleigh wave dispersion due to spatial (FEM) discretization of a thin elastic solid having non-curved boundary", Comput. Struct., 58(6), 1233-1244. https://doi.org/10.1016/0045-7949(95)00218-9
  20. Brown, J., Vendra, L. and Rabiei, A. (2010), "Bending properties of al-steel and steel-steel composite metal foams", Metal. Mater. Tran. A, 41(11), 2784-2793. https://doi.org/10.1007/s11661-010-0343-y
  21. Caneva, C., De Rosa, I. and Sarasini, F. (2008), "Monitoring of impacted aramid-reinforced composites by embedded PVDF acoustic emission sensors", Strain, 44(4), 308-316. https://doi.org/10.1111/j.1475-1305.2007.00374.x
  22. Caneva, C., De Rosa, I.M. and Sarasini, F. (2007), "Acoustic emission monitoring of flexurally loaded aramid/epoxy composites by embedded PVDF sensors", J. Acoust. Emission, 25, 80-91.
  23. Carlos, M., Cole, P., Vahaviolos, S., Halkyard, T. and Alampalli, S. (2000), "Acoustic emission bridge inspection/monitoring strategies", Paper presented at the Proc., 4th Structural Materials Technology-An NDT Conf.
  24. Chen, B. and Liu, J. (2008), "Damage in carbon fiber-reinforced concrete, monitored by both electrical resistance measurement and acoustic emission analysis", Construct. Build. Mater., 22(11), 2196-2201. https://doi.org/10.1016/j.conbuildmat.2007.08.004
  25. Chen, X., and Li, B. (2007), "Acoustic emission mepod for tool condition monitoring based on wavelet analysis", Int. J. Adv. Manuf. Tech., 33(9-10), 968-976. https://doi.org/10.1007/s00170-006-0523-5
  26. Czigany, T., Poloskei, K. and Karger-Kocsis, J. (2005), "Fracture and failure behavior of basalt fiber matreinforced vinylester/epoxy hybrid resins as a function of resin composition and fiber surface treatment", J. Mater. Sci., 40(21), 5609-5618. https://doi.org/10.1007/s10853-005-1273-8
  27. Dang Hoang, T., Herbelot, C. and Imad, A. (2010), "Rupture and damage mechanism analysis of a bolted assembly using coupling techniques between AE and DIC", Eng. Struct., 32(9), 2793-2803. https://doi.org/10.1016/j.engstruct.2010.04.048
  28. Danyadi, L., Renner, K., Szabo, Z., Nagy, G., Moczo, J. and Pukanszky, B. (2006), "Wood flour filled PP composites: adhesion, deformation, failure", Poly. Adv. Tech., 17(11-12), 967-974. https://doi.org/10.1002/pat.838
  29. Dassios, K.G., Kordatos, E.Z., Aggelis, D.G. and Matikas, T.E. (2014), "Crack growp monitoring in ceramic matrix composites by combined infrared thermography and acoustic emission", J. Am. Ceramic Soc., 97(1), 251-257. https://doi.org/10.1111/jace.12592
  30. De Groot, P.J., Wijnen, P.A. and Janssen, R.B. (1995), "Real-time frequency determination of acoustic emission for different fracture mechanisms in carbon/epoxy composites", Compos. Sci. Tech., 55(4), 405-412. https://doi.org/10.1016/0266-3538(95)00121-2
  31. de Oliveira, R. and Marques, A.T. (2008), "Health monitoring of FRP using acoustic emission and artificial neural networks", Comput. Struct., 86(3-5), 367-373. https://doi.org/10.1016/j.compstruc.2007.02.015
  32. Diamanti, K. and Soutis, C. (2010), "Structural health monitoring techniques for aircraft composite structures", Pr. Aerosp. Sci., 46(8), 342-352. https://doi.org/10.1016/j.paerosci.2010.05.001
  33. Dogossy, G. and Czigany, T. (2006), "Failure mode characterization in maize hull filled polyethylene composites by acoustic emission", Poly. Test., 25(3), 353-357. https://doi.org/10.1016/j.polymertesting.2005.12.004
  34. Dornfeld, D. (1992), "Application of acoustic emission techniques in manufacturing", NDT & E Int., 25(6), 259-269. https://doi.org/10.1016/0963-8695(92)90636-U
  35. Dornfeld, D., Lee, Y. and Chang, A. (2003), "Monitoring of ultraprecision machining processes", Int. J. Adv. Manuf. Tech., 21(8), 571-578. https://doi.org/10.1007/s00170-002-1294-2
  36. Drouillard, T. (1996), "A history of acoustic emission", J. Acoust. Emission, 14(1), 1-34.
  37. Giurgiutiu, V., Zagrai, A., Bao, J., Redmond, J., Roach, D. and Rackow, K. (2003), "Active sensors for health monitoring of aging aerospace", Int. J. Comadem, 6(1), 3-21.
  38. Golaski, L., Gebski, P. and Ono, K. (2002), "Diagnostics of reinforced concrete bridges by acoustic emission", J. Acoust. Emission, 20, 83-89.
  39. Govekar, E., Gradisek, J. and Grabec, I. (2000), "Analysis of acoustic emission signals and monitoring of machining processes", Ultrasonics, 38(1-8), 598-603. https://doi.org/10.1016/S0041-624X(99)00126-2
  40. Green, A., Lockman, C. and Steele, R. (1964), "Acoustic verification of structural integrity of polaris chambers", Modern Plast., 41(11), 137-139.
  41. Green, A.T. (2006), Proceedings of the 27th European Conference on Acoustic Emission Testing (EWGAE27), Cardiff, Wales, UK.
  42. Grosse, CU. and Ohtsu, M.E. (2008), Acoustic Emission Testing, Springer, Verlag Berlin Heidelberg.
  43. Haber, R.E., Jimenez, J.E., Peres, C.R. and Alique, J.R. (2004), "An investigation of tool-wear monitoring in a high-speed machining process", Sens. Actu. A: Phy., 116(3), 539-545. https://doi.org/10.1016/j.sna.2004.05.017
  44. Han, Z., Luo, H., Cao, J. and Wang, H. (2011), "Acoustic emission during fatigue crack propagation in a micro-alloyed steel and welds", Mater. Sci. Eng. A, 528(25), 7751-7756. https://doi.org/10.1016/j.msea.2011.06.065
  45. Hao, S., Ramalingam, S. and Klamecki, B. (2000), "Acoustic emission monitoring of sheet metal forming: characterization of the transducer, the work material and the process", J. Mater. Proc. Tech., 101(1), 124-136. https://doi.org/10.1016/S0924-0136(00)00441-6
  46. Holford, K.M., Pullin, R., Evans, S.L., Eaton, M.J., Hensman, J. and Worden, K. (2009), "Acoustic emission for monitoring aircraft structures", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 223(5), 525-532.
  47. Huang, M., Jiang, L., Liaw, P.K., Brooks, C.R., Seeley, R. and Klarstrom, D.L. (1998), "Using acoustic emission in fatigue and fracture materials research", JOM, 50(11), 1-14.
  48. Jackson, C.N., Sherlock, C.N. and Moore, P.O. (1998), Nondestructive Testing Handbook, Acoustic Emission Testing, American Society for Nondestructive Testing.
  49. Jayakumar, T., Mukhopadhyay, C.K., Venugopal, S., Mannan, S.L. and Raj, B. (2005), "A review of the application of acoustic emission techniques for monitoring forming and grinding processes", J. Mater. Proc. Tech., 159(1), 48-61. https://doi.org/10.1016/j.jmatprotec.2004.01.034
  50. Jemielniak, K. and Arrazola, P.J. (2008), "Application of AE and cutting force signals in tool condition monitoring in micro-milling", CIRP J. Manuf. Sci. Tech., 1(2), 97-102. https://doi.org/10.1016/j.cirpj.2008.09.007
  51. Jemielniak, K., Kossakowska, J. and Urba?ski, T. (2011), "Application of wavelet transform of acoustic emission and cutting force signals for tool condition monitoring in rough turning of Inconel 625", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(1), 123-129. https://doi.org/10.1243/09544054JEM2057
  52. Kaphle, M.R. (2012), "Analysis of acoustic emission data for accurate damage assessment for structural health monitoring applications", http://eprints.qut.edu.au/53201/1/Manindra_Kaphle_Thesis.pdf.
  53. Keshtgar, A. and Modarres, M. (2013), "Acoustic emission-based fatigue crack growp prediction", Reliability and Maintainability Symposium (RAMS), 2013 Proceedings - Annual.
  54. Kishi, T., Ohtsu, M. and Yuyama, S. (2000), Acoustic Emission-Beyond the Millennium, Elsevier.
  55. Kocsis, Z. and Czigany, T. (2007), Investigation of the Debonding Process in Wood Fiber Reinforced Polymer Composites by Acoustic Emission, Trans Tech Publications.
  56. Kurz, J.H., Grosse, C.U. and Reinhardt, H.W. (2005), "Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete", Ultrasonics, 43(7), 538-546. https://doi.org/10.1016/j.ultras.2004.12.005
  57. Lee, D.E., Hwang, I., Valente, C.M.O., Oliveira, J.F.G. and Dornfeld, D. (2006), "Precision Manufacturing Process Monitoring with Acoustic Emission", Eds. Wang, L. and Gao, R., Condition Monitoring and Control for Intelligent Manufacturing, Springer, London.
  58. Leone Jr, F.A., Ozevin, D., Godinez, V., Mosinyi, B., Bakuckas Jr, J.G., Awerbuch, J. and Tan, T.M. (2008), "Acoustic emission analysis of full-scale honeycomb sandwich composite curved fuselage panels", Proceedings of the 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring.
  59. Li, X. (2002), "A brief review: acoustic emission method for tool wear monitoring during turning", Int. J. Mach. Tool. Manuf., 42(2), 157-165. https://doi.org/10.1016/S0890-6955(01)00108-0
  60. Liu, P.F., Chu, J.K., Liu, Y.L. and Zheng, J.Y. (2012), "A study on the failure mechanisms of carbon fiber/epoxy composite laminates using acoustic emission", Mater. Des., 37, 228-235. https://doi.org/10.1016/j.matdes.2011.12.015
  61. Marec, A., Thomas, J.H. and El Guerjouma, R. (2008), "Damage characterization of polymer-based composite materials: Multivariable analysis and wavelet transform for clustering acoustic emission data", Mech. Syst. Signal Pr., 22(6), 1441-1464. https://doi.org/10.1016/j.ymssp.2007.11.029
  62. Margueres, P., Meraghni, F. and Benzeggagh, M. (2000), "Comparison of stiffness measurements and damage investigation techniques for a fatigued and post-impact fatigued GFRP composite obtained by RTM process", Compos. Part A: Appl. Sci. Manuf., 31(2), 151-163. https://doi.org/10.1016/S1359-835X(99)00061-5
  63. Mathew, M.T., Pai, P.S. and Rocha, L.A. (2008), "An effective sensor for tool wear monitoring in face milling: Acoustic emission", Sadhana, 33(3), 227-233. https://doi.org/10.1007/s12046-008-0016-3
  64. Mayr, S.I., Stanchits, S., Langenbruch, C., Dresen, G. and Shapiro, S.A. (2011), "Acoustic emission induced by pore-pressure changes in sandstone samples", Geophysics, 76(3), MA21-MA32. https://doi.org/10.1190/1.3569579
  65. Mclaskey, G.C. and Glaser, S.D. (2007), "Temporal evolution and 3D locations of acoustic emissions produced from the drying shrinkage of concrete", J. Acoust. Emission, 25(1), 52-57.
  66. Michlmayr, G., Cohen, D. and Or, D. (2012), "Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media-A review", Earth-Sci. Rev., 112(3), 97-114. https://doi.org/10.1016/j.earscirev.2012.02.009
  67. Mizutani, Y., Nagashima, K., Takemoto, M. and Ono, K. (2000), "Fracture mechanism characterization of cross-ply carbon-fiber composites using acoustic emission analysis", NDT & E Int., 33(2), 101-110. https://doi.org/10.1016/S0963-8695(99)00030-4
  68. Mohd, S. (2013), "Acoustic emission for fatigue crack monitoring in nuclear piping system (PHD)", Cardiff Univeristy, Retrieved from http://orca.cf.ac.uk/id/eprint/47735.
  69. Mori, Y., Obata, Y., Pavelka, J., Sikula, J. and Lokajicek, T. (2004), "AE Kaiser effect and electromagnetic emission in the deformation of rock sample", J. Acoust. Emission.
  70. Musa, J. (2002), "Application of Acoustic Emission (AE) technique in various materials (metals, woods and bricks)", University Malaysia Sarawak.
  71. Naderi, M., Kahirdeh, A. and Khonsari, M.M. (2012), "Dissipated permal energy and damage evolution of Glass/Epoxy using infrared thermography and acoustic emission", Compos. Part B: Eng., 43(3), 1613-1620. https://doi.org/10.1016/j.compositesb.2011.08.002
  72. NDT (2012), The Collaboration for NDT Education, www.ndt-ed.org.
  73. Ohno, K. and Ohtsu, M. (2010), "Crack classification in concrete based on acoustic emission", Construct. Build. Mater., 24(12), 2339-2346. https://doi.org/10.1016/j.conbuildmat.2010.05.004
  74. Ohtsu, M. (2006), "Quantitative AE techniques standardized for concrete structures", Adv. Mater. Res., 13, 183-192.
  75. Ohtsu, M. and Tomoda, Y. (2008), "Phenomenological model of corrosion process in reinforced concrete identified by acoustic emission", ACI Mater. J., 105(2), 194-199.
  76. Ohtsu, M. and Uddin, F.A. (2008), "Mechanisms of corrosion-induced cracks in concrete at meso-and macro-scales", J. Adv. Concrete Tech., 6(3), 419-429. https://doi.org/10.3151/jact.6.419
  77. Ono, K. (2011), "Acoustic emission in materials research-a review", J. Acoust Emission, 29, 284-308.
  78. Ono, K. and Gallego, A. (2012), "Research and applications of AE on advanced composites", Proceedings 30th European Conference on Acoustic Emission 2012, Eds. Gallego, A. and Ono, K., Granada, Spain, September.
  79. Oskouei, A.R. and Ahmadi, M. (2010), "Acoustic emission characteristics of mode I delamination in glass/polyester composites", J. Compos. Mater., 44(7), 793-807. https://doi.org/10.1177/0021998309349553
  80. PAC (2005), DiSP with AEwin User's Manual Rev. 3, from Physical Acoustic Corporation.
  81. Pappas, Y.Z. and Kostopoulos, V. (2001), "Toughness characterization and acoustic emission monitoring of a 2-D carbon/carbon composite", Eng. Fract. Mech., 68(14), 1557-1573. https://doi.org/10.1016/S0013-7944(01)00049-2
  82. Park, J.M., Kong, J.W., Kim, J.W. and Yoon, D.J. (2004), "Interfacial evaluation of electrodeposited single carbon fiber/epoxy composites by fiber fracture source location using fragmentation test and acoustic emission", Compos. Sci. Tech., 64(7), 983-999. https://doi.org/10.1016/j.compscitech.2003.08.006
  83. Pawar, P. and Ganguli, R. (2007), "Helicopter rotor health monitoring-a review", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 221(5), 631-647. https://doi.org/10.1243/09544100JAERO245
  84. Pollock, A.A. (1989), Acoustic Emission Inspection, Vol. 17, Nondestructive Evaluation and Quality Control, ASM International.
  85. Pullin, R., Eaton, M.J., Hensman, J.J., Holford, K.M., Worden, K. and Evans, S. (2010), "Validation of acoustic emission (AE) crack detection in aerospace grade steel using digital image correlation", Appl. Mech. Mater., 24, 221-226.
  86. Reiterer, A., Stanzl-Tschegg, S. and Tschegg, E. (2000), "Mode I fracture and acoustic emission of softwood and hardwood", Wood Sci. Tech., 34(5), 417-430. https://doi.org/10.1007/s002260000056
  87. Roach, D. (2008), "Assessing conventional and advanced NDI for composite aircraft", High Perform. Compos., 16(4), 72.
  88. Roberts, T. and Talebzadeh, M. (2003), "Acoustic emission monitoring of fatigue crack propagation", J. Construct. Steel Res., 59(6), 695-712. https://doi.org/10.1016/S0143-974X(02)00064-0
  89. Romhany, G., Karger-Kocsis, J. and Czigany, T. (2003), "Tensile fracture and failure behavior of thermoplastic starch with unidirectional and cross-ply flax fiber reinforcements", Macromol. Mater. Eng., 288(9), 699-707. https://doi.org/10.1002/mame.200300040
  90. Rose, J.L. (2004), Ultrasonic Waves in Solid Media, Cambridge University Press.
  91. Rouchier, S., Foray, G., Godin, N., Woloszyn, M. and Roux, J.J. (2013), "Damage monitoring in fibre reinforced mortar by combined digital image correlation and acoustic emission", Construct. Build. Mater., 38, 371-380. https://doi.org/10.1016/j.conbuildmat.2012.07.106
  92. Schnars, U. and Henrich, R. (2006), "Applications of NDT methods on composite structures in aerospace industry", Proceedings of the Conference on Damage in Composite Materials, Stuttgart, Germany.
  93. Sedlak, P., Hirose, Y., Khan, S.A., Enoki, M. and Sikula, J. (2009), "New automatic localization technique of acoustic emission signals in thin metal plates", Ultrasonics, 49(2), 254-262. https://doi.org/10.1016/j.ultras.2008.09.005
  94. Sharma, V., Sharma, S.K. and Sharma, A. (2008), "Cutting tool wear estimation for turning", J. Intel. Manuf., 19(1), 99-108. https://doi.org/10.1007/s10845-007-0048-2
  95. Shen, G., Geng, R. and Liu, S. (2002), "Parameter analysis of acoustic emission signals", Chin. J. Nondestruct. Test., 24, 72-77.
  96. Shiotani, T. (2006), "Evaluation of long-term stability for rock slope by means of acoustic emission technique", NDT & E Int., 39(3), 217-228. https://doi.org/10.1016/j.ndteint.2005.07.005
  97. Soulioti, D., Barkoula, N., Paipetis, A., Matikas, T., Shiotani, T. and Aggelis, D. (2009), "Acoustic emission behavior of steel fibre reinforced concrete under bending", Construct. Build. Mater., 23(12), 3532-3536. https://doi.org/10.1016/j.conbuildmat.2009.06.042
  98. Speckmann, H. and Henrich, R. (2004), "Structural health monitoring (SHM)-overview on technologies under development", Proceedings of the 16th World Conference on NDT, Montreal, Canada.
  99. Stanchits, S., Mayr, S., Shapiro, S. and Dresen, G. (2011), "Fracturing of porous rock induced by fluid injection", Tectonophysics, 503(1), 129-145. https://doi.org/10.1016/j.tecto.2010.09.022
  100. Sun, Q. and Tang, Y. (2002), "Singularity analysis using continuous wavelet transform for bearing fault diagnosis", Mech. Syst. Signal Pr., 16(6), 1025-1041. https://doi.org/10.1006/mssp.2002.1474
  101. Suresha, C. and Rajaprakash, B. (2009), "Applicability of acoustic emission in the analysis of friction stir welded joints", doi:10.1.1.381.5964.
  102. Szabo, J.S., Kocsis, Z. and Czigany, T. (2004), "Mechanical properties of basalt fibre reinforced PP/PA blends", Mech. Eng., 48(2), 119-132.
  103. Takeda, N. (2008), "Recent development of structural health monitoring technologies for aircraft composite structures", Proceedings of the 26th International Congress of the Aeronautical Sciences.
  104. Teti, R., Jemielniak, K., O'Donnell, G. and Dornfeld, D. (2010), "Advanced monitoring of machining operations", CIRP Annal. Manuf. Tech., 59(2), 717-739. https://doi.org/10.1016/j.cirp.2010.05.010
  105. Uddin, F.A., Shigeishi, M. and Ohtsu, M. (2006), "Fracture mechanics of corrosion cracking in concrete by acoustic emission", Meccanica, 41(4), 425-442. https://doi.org/10.1007/s11012-006-0004-9
  106. Ullmann, T., Schmidt, T., Hofmann, S. and Jemmali, R. (2010), "In-line quality assurance for the manufacturing of carbon fiber reinforced aircraft structures", Proceedings of 2nd International Symposium on NDT in Aerospace.
  107. Unnporsson, R. (2013), Hit Detection and Determination in AE Bursts, Ed. Sikorski, W., Acoustic Emission - Research and Applications.
  108. Vallen, H. (2002), AE Testing Fundamentals, Equipment, Applicationsm NDTnet, 7.
  109. Velayudham, A., Krishnamurthy, R. and Soundarapandian, T. (2005), "Acoustic emission based drill condition monitoring during drilling of glass/phenolic polymeric composite using wavelet packet transform", Mater. Sci. Eng. A, 412(1), 141-145. https://doi.org/10.1016/j.msea.2005.08.036
  110. Vogel, T., Schechinger, B. and Fricker, S. (2006), "Acoustic emission analysis as a monitoring method for prestressed concrete structures", Proceedings of the 9th European Conference on NDT (ECNDT), Berlin, September.
  111. Watson, J., Yuyama, S., Pullin, R. and Ing, M. (2005), Acoustic emission monitoring applications for civil structures, Bridge Management 5, Thomas Telford, London.
  112. Yu, J., Ziehl, P., Zarate, B. and Caicedo, J. (2011), "Prediction of fatigue crack growth in steel bridge components using acoustic emission", J. Construct. Steel Res., 67(8), 1254-1260. https://doi.org/10.1016/j.jcsr.2011.03.005
  113. Yu, L., Momeni, S., Godinez, V., Giurgiutiu, V., Ziehl, P. and Yu, J. (2011), "Dual mode sensing with lowprofile piezoelectric thin wafer sensors for steel bridge crack detection and diagnosis", Adv. Civil Eng., Article ID 402179, 10.
  114. Zeng, W., Wu, H. and Zhang, J. (2006), "Effect of tool wear on microstructure, mechanical properties and acoustic emission of friction stir welded 6061 Al alloy", Acta Metallurgica Sinica (English Letters), 19(1), 9-19. https://doi.org/10.1016/S1006-7191(06)60018-5
  115. Zeng, W.M., Wu, H.L. and Zhang, J. (2006), "Effect of tool wear on microstructure, mechanical properties and acoustic emission of friction stir welded 6061 Al ALLOY", Acta Metallurgica Sinica (English Letters), 19(1), 9-19. https://doi.org/10.1016/S1006-7191(06)60018-5

피인용 문헌

  1. Estimation study of structure crack propagation under random load based on multiple factors correction vol.39, pp.3, 2017, https://doi.org/10.1007/s40430-016-0654-z
  2. Acoustic emission analysis for characterisation of damage mechanisms in glass fiber reinforced polyester composite 2018, https://doi.org/10.1080/14484846.2016.1264284
  3. Acoustic emission characterization of the fracture process in steel fiber reinforced concrete vol.18, pp.6, 2016, https://doi.org/10.12989/cac.2016.18.6.921
  4. A Brief Review on Acoustic Analysis in Quality Evaluation and a New Method for Determining Bulk Density of Aggregate pp.1886-1784, 2019, https://doi.org/10.1007/s11831-018-9288-x
  5. Bolting Elements of Helicopter Fuselage and Tail Boom Joints Using Acoustic Emission Amplitude and Absolute Energy Criterion vol.32, pp.3, 2019, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000963
  6. Analysis and Identification of the Mechanism of Damage and Fracture of High-Filled Wood Fiber/Recycled High-Density Polyethylene Composites vol.11, pp.1, 2019, https://doi.org/10.3390/polym11010170
  7. Acoustic emission characterization of the fracture process in steel fiber reinforced concrete vol.18, pp.4, 2015, https://doi.org/10.12989/cac.2016.18.4.923
  8. Guided wave analysis of air-coupled impact-echo in concrete slab vol.20, pp.3, 2017, https://doi.org/10.12989/cac.2017.20.3.257
  9. Characterizing the damage mechanisms in mode II delamination in glass/epoxy composite using acoustic emission vol.67, pp.5, 2015, https://doi.org/10.12989/sem.2018.67.5.545
  10. Field measurement and numerical simulation of excavation damaged zone in a 2000 m-deep cavern vol.16, pp.4, 2015, https://doi.org/10.12989/gae.2018.16.4.399
  11. Microseismic monitoring and its precursory parameter of hard roof collapse in longwall faces: A case study vol.17, pp.4, 2019, https://doi.org/10.12989/gae.2019.17.4.375
  12. Acoustic Emission-Based Study to Characterize the Crack Initiation Point of Wood Fiber/HDPE Composites vol.11, pp.4, 2015, https://doi.org/10.3390/polym11040701
  13. A combined experimental and numerical study on the plastic damage in microalloyed Q345 steels vol.72, pp.3, 2015, https://doi.org/10.12989/sem.2019.72.3.313
  14. A New Method of Low Amplitude Signal Detection and Its Application in Acoustic Emission vol.10, pp.1, 2015, https://doi.org/10.3390/app10010073
  15. Mechanical test study in composites using digital holographic interferometry and optical coherence tomography simultaneously vol.59, pp.3, 2020, https://doi.org/10.1364/ao.379149
  16. A Review on the Relationships Between Acoustic Emission, Friction and Wear in Mechanical Systems vol.72, pp.2, 2020, https://doi.org/10.1115/1.4044799
  17. Estimating damage size and remaining useful life in degraded structures using deep learning-based multi-source data fusion vol.19, pp.5, 2015, https://doi.org/10.1177/1475921719890616
  18. Acoustic emission technique to identify stress corrosion cracking damage vol.75, pp.6, 2015, https://doi.org/10.12989/sem.2020.75.6.723
  19. Detection of Cavities Beneath Plate Structure using a Microphone vol.20, pp.6, 2020, https://doi.org/10.9798/kosham.2020.20.6.229
  20. Acoustic emission examination of high strength steel M250 pressure vessels for aerospace applications vol.998, pp.None, 2020, https://doi.org/10.1088/1757-899x/998/1/012037
  21. The development of techniques to detect high temperature hydrogen attack - A mini review vol.45, pp.p6, 2015, https://doi.org/10.1016/j.matpr.2021.02.112
  22. Real-Time Leak Detection for a Gas Pipeline Using a k -NN Classifier and Hybrid AE Features vol.21, pp.2, 2015, https://doi.org/10.3390/s21020367
  23. A Review on the Applications of Acoustic Emission Technique in the Study of Stress Corrosion Cracking vol.2, pp.1, 2015, https://doi.org/10.3390/cmd2010001
  24. Subsurface damage detection and structural health monitoring using digital image correlation and topology optimization vol.230, pp.None, 2021, https://doi.org/10.1016/j.engstruct.2020.111712
  25. Non-destructive evaluation of steel and GFRP reinforced beams using AE and DIC techniques vol.77, pp.5, 2015, https://doi.org/10.12989/sem.2021.77.5.637
  26. Estimation of Cavities beneath Plate Structures Using a Microphone: Laboratory Model Tests vol.21, pp.9, 2015, https://doi.org/10.3390/s21092941
  27. A New Fracture Detection Algorithm of Low Amplitude Acoustic Emission Signal Based on Kalman Filter-Ripple Voltage vol.21, pp.12, 2015, https://doi.org/10.3390/s21124247
  28. A bibliometric analysis of research on acoustic emission for nondestructive testing vol.1167, pp.1, 2021, https://doi.org/10.1088/1757-899x/1167/1/012009
  29. Numerical simulation on the crack initiation and propagation of coal with combined defects vol.79, pp.2, 2015, https://doi.org/10.12989/sem.2021.79.2.237
  30. Evaluation of alkali-silica reaction damage in concrete by using acoustic emission signal features and damage rating index: damage monitoring on concrete prisms vol.54, pp.4, 2015, https://doi.org/10.1617/s11527-021-01749-z
  31. Evaluation Approach of Fracture Behavior for Asphalt Concrete with Different Aggregate Gradations and Testing Temperatures Using Acoustic Emission Monitoring vol.14, pp.16, 2015, https://doi.org/10.3390/ma14164390
  32. Lifetime health monitoring of fiber reinforced composites using highly flexible and sensitive MXene/CNT film sensor vol.332, pp.p2, 2021, https://doi.org/10.1016/j.sna.2021.113148
  33. Investigation of layered composite plates under acoustic emission using an appropriate finite element model vol.48, pp.12, 2015, https://doi.org/10.1139/cjce-2020-0452
  34. A Review of Sensing Technologies for Non-Destructive Evaluation of Structural Composite Materials vol.5, pp.12, 2015, https://doi.org/10.3390/jcs5120319
  35. A Machine Learning Method for Detection of Surface Defects on Ceramic Tiles Using Convolutional Neural Networks vol.11, pp.1, 2015, https://doi.org/10.3390/electronics11010055
  36. Cluster-based acoustic emission signal processing and loading rate effects study of nanoindentation on thin film stack structures vol.165, pp.None, 2015, https://doi.org/10.1016/j.ymssp.2021.108301