References
- Arash, B. and Ansari, R. (2010), "Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain", Physica E: Low Dimen. Syst. Nanostruct., 42, 2058-2064. https://doi.org/10.1016/j.physe.2010.03.028
- Arash, B. and Wang, Q. (2012), "A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes", Comput. Mater. Sci., 51, 303-313. https://doi.org/10.1016/j.commatsci.2011.07.040
- Thai, H.T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009
- Aydogdu, M. (2009). "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E: Low Dimen. Syst. Nanostruct., 41, 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
- Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 35, 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803
- Li, X., Bhushan, B., Takashima, K., Baek, C.W. and Kim, Y.K. (2003), "Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques", Ultramicroscopy, 97, 481-494. https://doi.org/10.1016/S0304-3991(03)00077-9
- Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solid., 56, 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
- Murmu, T. and Pradhan, S.C. (2009), "Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM", Physica E: Low Dimen. Syst. Nanostruct., 41, 1232-1239. https://doi.org/10.1016/j.physe.2009.02.004
- Nix, W.D. and Gao, H. (1998), "Indentation size effects in crystalline materials: A law for strain gradient plasticity", J. Mech. Phys. Solid., 46, 411-425. https://doi.org/10.1016/S0022-5096(97)00086-0
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41, 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
- Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons Inc.
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45, 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103, 023511.
- Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29, 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
- Wang, Q. (2005), Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98, 124301.
- Wang, C.M., Kitipornchai, S., Lim, C.W. and Eisenberger, M. (2008), "Beam bending solutions based on nonlocal Timoshenko beam theory", J. Eng. Mech., 134, 475-481. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(475)
- Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures", Phys. Lett. A, 363, 236-242. https://doi.org/10.1016/j.physleta.2006.10.093
- Wang, Q. and Varadan, V.K. (2006), "Vibration of carbon nanotubes studied using nonlocal continuum mechanics", Smart Mater. Struct., 15, 659-666. https://doi.org/10.1088/0964-1726/15/2/050
- Wang, Q., Varadan, V.K. and Quek, S.T. (2006), "Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models", Phys. Lett. A, 357, 130-135. https://doi.org/10.1016/j.physleta.2006.04.026
- Wang, Q. and Wang, C. (2007), "The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes", Nanotechnology, 18, 075702. https://doi.org/10.1088/0957-4484/18/7/075702
- Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18, 105401. https://doi.org/10.1088/0957-4484/18/10/105401
- Wang, C.M., Zhang, Y.Y., Ramesh, S.S. and Kitipornchai, S. (2006), "Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory", J. Phys. D: Appl. Phys., 39, 3904-3909. https://doi.org/10.1088/0022-3727/39/17/029
- Yakobson, B.I., Brabec, C.J. and Bernholc, J. (1996), "Nanomechanics of carbon tubes: Instabilities beyond linear response", Phys. Rev. Lett., 76, 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511
- Zenkour, A.M. (2004), "Analytical solution for bending of cross-ply laminated plates under thermomechanical loading", Compos. Struct., 65, 367-379. https://doi.org/10.1016/j.compstruct.2003.11.012
- Zenkour, A.M. (2005a), "A comprehensive analysis of functionally graded sandwich plates: Part 1-Deflection and stresses", Int. J. Solid. Struct., 42, 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015
- Zenkour, A.M. (2005b), "A comprehensive analysis of functionally graded sandwich plates: Part 2-Buckling and free vibration", Int. J. Solid. Struct., 42, 5243-5258. https://doi.org/10.1016/j.ijsolstr.2005.02.016
- Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Model., 30, 67-84. https://doi.org/10.1016/j.apm.2005.03.009
- Zhang, Y.Q., Liu, G.R. and Xie, X.Y. (2005), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Phys. Rev. B, 71, 195404 https://doi.org/10.1103/PhysRevB.71.195404
Cited by
- Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept vol.20, pp.5, 2016, https://doi.org/10.12989/scs.2016.20.5.963
- Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
- A review of continuum mechanics models for size-dependent analysis of beams and plates vol.177, 2017, https://doi.org/10.1016/j.compstruct.2017.06.040
- Surface effects on vibration and buckling behavior of embedded nanoarches vol.64, pp.1, 2017, https://doi.org/10.12989/sem.2017.64.1.001
- Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment vol.64, pp.1, 2015, https://doi.org/10.12989/sem.2017.64.1.121
- Wave dispersion characteristics of nonlocal strain gradient double-layered graphene sheets in hygro-thermal environments vol.65, pp.6, 2018, https://doi.org/10.12989/sem.2018.65.6.645
- A unified formulation for modeling of inhomogeneous nonlocal beams vol.66, pp.3, 2015, https://doi.org/10.12989/sem.2018.66.3.369
- Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory vol.67, pp.4, 2015, https://doi.org/10.12989/sem.2018.67.4.417
- Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix vol.67, pp.5, 2015, https://doi.org/10.12989/sem.2018.67.5.517
- Finite strain nonlinear longitudinal vibration of nanorods vol.6, pp.4, 2018, https://doi.org/10.12989/anr.2018.6.4.323
- Nonlinear behavior of fiber reinforced cracked composite beams vol.30, pp.4, 2019, https://doi.org/10.12989/scs.2019.30.4.327
- Static and Dynamic Behavior of Nanotubes-Reinforced Sandwich Plates Using (FSDT) vol.57, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/jnanor.57.117
- Flexoelectric effects on dynamic response characteristics of nonlocal piezoelectric material beam vol.8, pp.4, 2015, https://doi.org/10.12989/amr.2019.8.4.259
- Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle vol.8, pp.2, 2015, https://doi.org/10.12989/anr.2020.8.2.135
- A comprehensive review on the modeling of smart piezoelectric nanostructures vol.74, pp.5, 2015, https://doi.org/10.12989/sem.2020.74.5.611
- On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells vol.75, pp.6, 2015, https://doi.org/10.12989/sem.2020.75.6.659
- Large amplitude free torsional vibration analysis of size-dependent circular nanobars using elliptic functions vol.77, pp.4, 2021, https://doi.org/10.12989/sem.2021.77.4.535