참고문헌
-
J.-W. Lee, T. O. Kwon, R. Thiruvenkatachari, and I.-S. Moon, Adsorption and photocatalytic degradation of bisphenol A using
$TiO_2$ and its separation by submerged hollowfiber ultrafiltration membrane, J. Environ. Sci., 18, 193-200 (2006). - S. Esplugas, D. M. Bila, L. G. Krause, and M. Dezotti, Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents, J. Hazard. Mater., 149(3), 631-642 (2007). https://doi.org/10.1016/j.jhazmat.2007.07.073
- J. Jiang, S. Y. Pang, J. Ma, and H. Liu, Oxidation of phenolic endocrine disrupting chemicals by potassium permanganate in synthetic and real waters, Environ. Sci. Technol., 46, 1774-1781 (2012). https://doi.org/10.1021/es2035587
- X. Jin, S. Peldszus, and P. M. Huck, Reaction kinetics of selected micropollutants in ozonation and advanced oxidation processes, Water Res., 46, 6519-6530 (2012). https://doi.org/10.1016/j.watres.2012.09.026
- H. B. Patisaul and H. B. Adewale, Long-term effects of environmental endocrine disruptors on reproductive physiology and behavior, Front. Behav. Neurosci., 3, 1-18 (2009).
- S. Flint, T. Markle, S. Thompson, and E. Wallace, Bisphenol A exposure, effects, and policy: A wildlife perspective, J. Environ. Manag., 104, 19-34 (2012). https://doi.org/10.1016/j.jenvman.2012.03.021
- C. Baronti, R. Curini, G. D'Ascenzo, A. Di Corcia, A. Gentili, and R. Samperi, Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water, Environ. Sci. Technol., 34, 5059-5066 (2000). https://doi.org/10.1021/es001359q
- T. Manning, Endocrine disrupting chemicals: a review of the state of the science, Aus. J. Ecotoxicol., 11, 1-52 (2005).
- A. O. Ifelebuegu and C. P. Ezenwa, Removal of endocrine disrupting chemicals in wastewater treatment by Fenton-like oxidation, Water Air Soil Pollut., 217, 213-220 (2011). https://doi.org/10.1007/s11270-010-0580-0
- J. A. Rogers, L. Metz, and V. W. Yong, Endocrine disrupting chemicals and immune responses: a focus on bisphenol-A and its potential mechanisms, Mol. Immunol., 53, 421-430 (2013). https://doi.org/10.1016/j.molimm.2012.09.013
- G. Mezohegyi, B. Erjavec, R. Kaplan, and A. Pintar, Removal of bisphenol A and its oxidation products from aqueous solutions by sequential catalytic wet air oxidation and biodegradation, Ind. Eng. Chem. Res., 52, 9301-9307 (2013). https://doi.org/10.1021/ie400998t
- Y. Y. Chan, Y. Yue, Y. Li, and R. D. Webster, Electrochemical/ chemical oxidation of bisphenol A in a four-electron/two-proton process in aprotic organic solvents, Electrochimica Acta, 112, 287-294 (2013). https://doi.org/10.1016/j.electacta.2013.08.181
- J. L. Wang and L. J. Xu, Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application, Crit. Rev. Environ. Sci. Technol., 42, 251-325 (2012). https://doi.org/10.1080/10643389.2010.507698
- V. Homem and L. Santos, Degradation and removal methods of antibiotics from aqueous matrices-a review, J. Environ. Manage., 92, 2304-2347 (2011). https://doi.org/10.1016/j.jenvman.2011.05.023
- M. Magureanu, D. Piroi, N.B. Mandache, V. David, A. Medvedovici, and V. I. Parvulescu, Degradation of pharmaceutical compound pentoxifylline in water by non-thermal plasma treatment, Water Res., 44, 3445-3453 (2010). https://doi.org/10.1016/j.watres.2010.03.020
- S. Tang, N. Lu, J. Li, and Y. Wu, Removal of bisphenol A in water using an integrated granular activated carbon preconcentration and dielectric barrier discharge degradation treatment, Thin Solid Films, 521, 257-260 (2012). https://doi.org/10.1016/j.tsf.2011.10.201
- K. S. Kim, C. S. Yang, and Y. S. Mok, Degradation of veterinary antibiotics by dielectric barrier discharge plasma, Chem. Eng. J., 219, 19-27 (2013). https://doi.org/10.1016/j.cej.2012.12.079
- J.-O Jo, S. D. Kim, H.-J. Lee, and Y. S. Mok, Decomposition of taste-and-odor compounds produced by cyanobacteria algae using atmospheric pressure plasma created inside a porous hydrophobic ceramic tube, Chem. Eng. J., 247, 291-301 (2014). https://doi.org/10.1016/j.cej.2014.03.018
- K. S. Kim, S. K. Kam, and Y. S. Mok, Elucidation of the degradation pathways of sulfonamide antibiotics in a dielectric barrier discharge plasma system, Chem. Eng. J., 271, 31-42 (2015). https://doi.org/10.1016/j.cej.2015.02.073
- U. Kogelschatz, B. Eliasson, and W. Egli, Dielectric-barrier discharges, principle and applications, J. Phys. IV France, 7, C4-47-C4-66 (1997).
- Y. S. Mok and I. S. Nam, Removal of nitric oxide in a pulsed corona discharge reactor, Chem. Eng. Technol., 22, 527-532 (1999). https://doi.org/10.1002/(SICI)1521-4125(199906)22:6<527::AID-CEAT527>3.0.CO;2-5
- H. Zhang, Q. Huang, Z. Ke, L. Yang, X. Wang, and Z. Yu, Degradation of microcystin-LR in water by glow discharge plasma oxidation at the gas-solution interface and its safety evaluation, Water Res., 46, 6554-6562 (2012). https://doi.org/10.1016/j.watres.2012.09.041
- M. A. Malik, Water purification by plasmas: which reactors are most energy efficient?, Plasma Chem Plasma Proc., 30, 21-31 (2010). https://doi.org/10.1007/s11090-009-9202-2
- P. Manoj Kumar Reddy, B. Ramaraju, and Ch. Subrahmanyam, Degradation of malachite green by dielectric barrier discharge plasma, Water Sci. Technol., 67, 1097-1104 (2013). https://doi.org/10.2166/wst.2013.663
- J. O. Jo, S. B. Lee, and Y. S. Mok, Decolorization of azo dyeing wastewater using underwater dielectric barrier discharge plasma, Appl. Chem. Eng., 24, 544-550 (2013).
- Standard Test Method for Determination of Bisphenol A in Environmental Waters by Liquid Chromatography/Tandem Mass Spectrometry, American Society for Testing and Materials (ASTM) D7574-09.
- G. J. M. Hagelaar and L. C. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma Sources Sci. Technol., 14, 722-733 (2005). https://doi.org/10.1088/0963-0252/14/4/011
- D. Bonazzi, V. Andrisano, A. M. Di Pietra, and V. Cavrini, Analysis of trimethoprim-sulfonamide drug combinations in dosage forms by UV spectroscopy and liquid chromatography (HPLC), Farmaco, 49, 381-386 (1994).
- I. Panorel, S. Preis, I. Kornev, H. Hatakka, and M. Louhi-Kultanen, Oxidation of aqueous paracetamol by pulsed corona discharge, Ozone-Sci. Eng., 35, 116-124 (2013). https://doi.org/10.1080/01919512.2013.760415
- I. Panorel, S. Preis, I. Kornev, H. Hatakka, and M. Louhi-Kultanen, Oxidation of aqueous pharmaceuticals by pulsed corona discharge, Environ. Technol., 34, 923-930 (2013). https://doi.org/10.1080/09593330.2012.722691
- M. Magureanu, D. Piroi, F. Gherendi, N. B. Mandache, and V. I. Parvulescu, Decomposition of methylene blue in water by corona discharges, Plasma Chem. Plasma Proc., 28, 677-688 (2008). https://doi.org/10.1007/s11090-008-9155-x
-
S. E. Kim, H. Yamada, and T. Hiroshi, Evaluation of estrogenicity for
$17{\beta}$ -estradiol decomposition during ozonation, Ozone Sci. Eng., 26, 563-571 (2004). https://doi.org/10.1080/01919510490885370 -
L. Gao, L. Sun, S. Wan, Z. Yu, and M. Li, Degradation kinetics and mechanism of emerging contaminants in water by dielectric barrier discharge non-thermal plasma: the case of
$17{\beta}$ -Estradiol, Chem. Eng. J., 228, 790-798 (2013). https://doi.org/10.1016/j.cej.2013.05.079 - S. V. Mayani, V. J. Mayani, and S. W. Kim, SBA-15 supported Fe, Ni, Fe-Ni bimetallic catalysts for wet oxidation of bisphenol-A, Bull. Korean Chem. Soc., 35, 3535-3541 (2014). https://doi.org/10.5012/bkcs.2014.35.12.3535
- M. Molkenthin, T. Olmez-Hanci, M. R. Jekel, and I. Arslan-Alaton, Photo-Fenton-like treatment of BPA: effect of UV light source and water matrix on toxicity and transformation products, Water Res., 47, 5052-5064 (2013). https://doi.org/10.1016/j.watres.2013.05.051
- J. R. Peller, S. P. Mezyk, and W. J. Cooper, Bisphenol A reactions with hydroxyl radicals: diverse pathways determined between deionized water and tertiary treated wastewater solutions, Res. Chem. Intermed., 35, 21-34 (2009). https://doi.org/10.1007/s11164-008-0012-6
- K. S. Tay, N. A. Rahman, and M. R. B. Abas, Degradation of bisphenol A by ozonation: rate constants, influence of inorganic anions, and by-products, Maejo Int. J. Sci. Technol., 6, 77-94 (2012).
- M. Deborde, S. Rabouan, P. Mazellier, J.-P. Duguet, and B. Legube, Oxidation of bisphenol A by ozone in aqueous solution, Water Res., 42, 4299-4038 (2008). https://doi.org/10.1016/j.watres.2008.07.015
-
J.-C. Sin, S.-M. Lam, A. R. Mohamed, and K.-T. Lee, Degrading endocrine disrupting chemicals from wastewater by
$TiO_2$ photocatalysis: a review, Int. J. Photoenergy, 2012, 1-23 (2012). - R. A. Torres, C. Petrier, E. Combet, M. Carrier, and C. Pulgarin, Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products, Ultrasonics Sonochem., 15, 605-611 (2008). https://doi.org/10.1016/j.ultsonch.2007.07.003
-
J. Staehelin, R. E. Buehler, and J. Hoigne, Ozone decomposition in water studied by pulse radiolysis. 2. Hydroxyl and hydrogen tetroxide (
$HO_4$ ) as chain intermediates, J. Phys. Chem., 88, 5999-6004 (1984). https://doi.org/10.1021/j150668a051 - M. A. M. Khraisheh, Effect of key process parameters in the decolorisation of reactive dyes by ozone, Col. Technol., 119, 24-30 (2002).
피인용 문헌
- Decomposition of Aqueous Anatoxin-a Using Underwater Dielectric Barrier Discharge Plasma Created in a Porous Ceramic Tube vol.30, pp.2, 2016, https://doi.org/10.11001/jksww.2016.30.2.167
- The Types of Plasma Reactors in Wastewater Treatment vol.208, pp.None, 2018, https://doi.org/10.1088/1755-1315/208/1/012002