References
- A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38, 253-278 (2009). https://doi.org/10.1039/B800489G
- Z. Zou, J. Ye, K. Sayama, and H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature, 414, 625-627 (2001). https://doi.org/10.1038/414625a
- X. Chen, S. Shen, L. Guo, and S. S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev., 110, 6503-6570 (2010). https://doi.org/10.1021/cr1001645
- F. E. Osterloh, Inorganic materials as catalysts for photochemical splitting of water, Chem. Mater., 20, 35-54 (2008). https://doi.org/10.1021/cm7024203
- G. K. Mor, K. Shankar, M. Paulos, O. K. Varghese, and C. A. Grimes, Enhanced photocleavage of water using titania nanotube arrays, Nano. Lett., 5, 191-195 (2005). https://doi.org/10.1021/nl048301k
- G. Liu, L. Wang, H. G. Yang, H. M. Cheng, and G. Q. Lu, Titania-based photocatalysts-crystal growth, doping and heterostructuring, J. Mater. Chem., 20, 831-843 (2010). https://doi.org/10.1039/B909930A
-
R. Abe, T. Takata, H. Sugihara, and K. Domen, Photocatalytic overall water splitting under visible light by TaON and
$WO_3$ with an$IO_3^-/I^-$ shuttle redox mediator, Chem. Commun., 30, 3829-3831 (2005). - A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting, Adv. Funct. Mater., 19, 1849-1856 (2009). https://doi.org/10.1002/adfm.200801363
- K. S. Ahn, S. Shet, T. Deutsch, C. S. Jiang, Y. Tan, M. A. Jassim, and J. Turner, Enhancement of photoelectrochemical response by aligned nanorods in ZnO thin films, J. Power Sources, 176, 387-392 (2008). https://doi.org/10.1016/j.jpowsour.2007.10.034
- M. Sathish, B. Viswanathan, and R. P. Viswanath, Alternative synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting, Int. J. Hydrogen Energ., 31, 891-898 (2006). https://doi.org/10.1016/j.ijhydene.2005.08.002
- Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, and J. R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets, J. Am. Chem. Soc., 133, 10878-10884 (2011). https://doi.org/10.1021/ja2025454
-
K. Sivula, F. L. Formal, and M. Gratzel, Solar water splitting: progress using hematite (
${\alpha}-Fe_2O_3$ ) photoelectrodes, Chem. Sus. Chem., 4, 432-449 (2011). https://doi.org/10.1002/cssc.201000416 - M. T. Mayer, Y. Lin, G. Yuan, and D. Wang, Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite, Accounts Chem. Res., 46, 1558-1566 (2013). https://doi.org/10.1021/ar300302z
- Y. Ling, G. Yuan, S. Sheehan, S. Zhou, and D. Wang, Hematite-based solar water splitting: challenges and opportunities, Energ. Environ. Sci., 4, 4862-4869 (2011). https://doi.org/10.1039/c1ee01850g
- F. L. Formal, M. Gratzel, and K. Sivula, Controlling photoactivity in ultrathin hematite films for solar water-splitting, Adv. Funct. Mater., 20, 1099-1107 (2010). https://doi.org/10.1002/adfm.200902060
- S. Shen, Toward efficient solar water splitting over hematite photoelectrodes, J. Mater. Res., 29, 29-46 (2014). https://doi.org/10.1557/jmr.2013.310
- P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks, Nature, 396, 152-155 (1998). https://doi.org/10.1038/24132
- A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, The atmospheric-pressure plasma jet: a review and comparison to other plasma sources, IEEE T. Plasma Sci., 26, 1685-1694 (1998). https://doi.org/10.1109/27.747887
- H. M. Yang, W. K. Nam, and D. W. Park, Production of nano-sized carbon black from hydrocarbon by a thermal plasma, J. Nanosci. Nanotechno., 7, 3744-3749 (2007). https://doi.org/10.1166/jnn.2007.003
- S. J. Kim and D. W. Park, Preparation of ZnO nanopowders by thermal plasma and characterization of photo-catalytic property, Appl. Surf. Sci., 255, 5363-5367 (2009). https://doi.org/10.1016/j.apsusc.2008.10.028
- J. W. Park, D. W. Kim, H. S. Seon, K. S. Kim, and D. W. Park, Synthesis of carbon-doped TiO2 nanoparticles using CO2 decomposition by thermal plasma, Thin Solid Films, 518, 4113-4116 (2010). https://doi.org/10.1016/j.tsf.2009.11.013
- S. H. Lee, S. M. Oh, and D. W. Park, Preparation of silver nanopowder by thermal plasma, Mat. Sci. Eng. C-Bio. S., 27, 1286-1290 (2007). https://doi.org/10.1016/j.msec.2006.08.010
- C. Sasso, D. Beneventi, E. Zeno, M. P. Conil, D. Chaussy, and M. N. Belgacem, Carboxymethylcellulose: a conductivity enhancer and film-forming agent for processable polypyrrole from aqueous medium, Synthetic Met., 161, 397-403 (2011). https://doi.org/10.1016/j.synthmet.2010.12.017