DOI QR코드

DOI QR Code

Photoelectrochemical Performance of Hematite Nanoparticles Synthesized by a DC Thermal Plasma Process

DC 열플라즈마를 이용하여 제조된 산화철 나노입자의 광 전기화학적 물분해 효율 증가연구

  • Lee, Chulho (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Lee, Dongeun (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Kim, Sunkyu (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Yoo, Hyeonseok (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
  • 이철호 (인하대학교 화학.화학공학 융합학과) ;
  • 이동은 (인하대학교 화학.화학공학 융합학과) ;
  • 김선규 (인하대학교 화학.화학공학 융합학과) ;
  • 유현석 (인하대학교 화학.화학공학 융합학과) ;
  • 최진섭 (인하대학교 화학.화학공학 융합학과)
  • Received : 2015.03.05
  • Accepted : 2015.04.08
  • Published : 2015.06.10

Abstract

In this research, hematite nanoparticles were synthesized by DC thermal plasma process to increase the overall surface area. The effect of binders on hematite electrodes was investigated by changing the type and composition of binders when preparing electrodes. Nitrogen gas was also added to the DC thermal plasma process in order to dope the hematite with N for enhancing photoelectrochemical properties of hematite nanoparticles. The efficiency of water splitting reaction was measured by linear sweep voltammetry (LSV) under solar simulator. In LSV measurements, the onset potential and maximum current density at a fixed voltage were measured. The durability of electrodes was checked by repeating LSV measurements. CMC (carboxymethyl cellulose) binder with 50 : 1 composition exhibits the highest current density of $12mA/cm^2$ and CMC binder with 20 : 1 composition, showing the initial current density of $3mA/cm^2$, endures 20 times of repetitive LSV measurements. Effects of nitrogen doping on hematite nanoparticles were proven to be insignificant.

본 연구에서는 광 전기화학적 물 분해 전극 재료로 이용되는 산화철($Fe_2O_3$, hematite)을 표면적을 크게 하기 위하여 DC 열플라즈마 장치를 이용하여 나노입자로 합성한 후 전극을 제조 시 binder의 종류 및 조성을 다르게 하여 염기성 전해질에서 각각의 물 분해 효율을 측정하는 실험을 진행하였으며 질소 도핑을 통해 질소가 산화철의 광전기화학 반응에 끼치는 영향을 확인하였다. 산화철 전극을 제조하여 solar simulator를 이용한 LSV 실험을 통해 각 전극의 onset potential 및 설정한 전압 범위에서의 최대 전류밀도를 측정하였으며, 전극의 내구성 평가를 위하여 LSV 실험을 반복하여 진행하였다. CMC (carboxymethyl cellulose)를 50 : 1의 비율로 섞어 binder로 이용한 산화철 전극이 가장 높은 전류밀도인 $12mA/cm^2$의 전류밀도를 나타내었고, CMC를 20 : 1 비율로 섞은 binder를 이용할 시 $3mA/cm^2$의 초기 전류밀도를 가지고 약 20회의 반복 실험을 견뎌내는 내구성을 나타내었다. 질소의 도핑이 산화철 나노입자의 광 전기 화학적 반응에 끼치는 영향은 미미한 것으로 확인되었다.

Keywords

References

  1. A. Kudo and Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38, 253-278 (2009). https://doi.org/10.1039/B800489G
  2. Z. Zou, J. Ye, K. Sayama, and H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature, 414, 625-627 (2001). https://doi.org/10.1038/414625a
  3. X. Chen, S. Shen, L. Guo, and S. S. Mao, Semiconductor-based photocatalytic hydrogen generation, Chem. Rev., 110, 6503-6570 (2010). https://doi.org/10.1021/cr1001645
  4. F. E. Osterloh, Inorganic materials as catalysts for photochemical splitting of water, Chem. Mater., 20, 35-54 (2008). https://doi.org/10.1021/cm7024203
  5. G. K. Mor, K. Shankar, M. Paulos, O. K. Varghese, and C. A. Grimes, Enhanced photocleavage of water using titania nanotube arrays, Nano. Lett., 5, 191-195 (2005). https://doi.org/10.1021/nl048301k
  6. G. Liu, L. Wang, H. G. Yang, H. M. Cheng, and G. Q. Lu, Titania-based photocatalysts-crystal growth, doping and heterostructuring, J. Mater. Chem., 20, 831-843 (2010). https://doi.org/10.1039/B909930A
  7. R. Abe, T. Takata, H. Sugihara, and K. Domen, Photocatalytic overall water splitting under visible light by TaON and $WO_3$ with an $IO_3^-/I^-$ shuttle redox mediator, Chem. Commun., 30, 3829-3831 (2005).
  8. A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting, Adv. Funct. Mater., 19, 1849-1856 (2009). https://doi.org/10.1002/adfm.200801363
  9. K. S. Ahn, S. Shet, T. Deutsch, C. S. Jiang, Y. Tan, M. A. Jassim, and J. Turner, Enhancement of photoelectrochemical response by aligned nanorods in ZnO thin films, J. Power Sources, 176, 387-392 (2008). https://doi.org/10.1016/j.jpowsour.2007.10.034
  10. M. Sathish, B. Viswanathan, and R. P. Viswanath, Alternative synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting, Int. J. Hydrogen Energ., 31, 891-898 (2006). https://doi.org/10.1016/j.ijhydene.2005.08.002
  11. Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, and J. R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets, J. Am. Chem. Soc., 133, 10878-10884 (2011). https://doi.org/10.1021/ja2025454
  12. K. Sivula, F. L. Formal, and M. Gratzel, Solar water splitting: progress using hematite (${\alpha}-Fe_2O_3$) photoelectrodes, Chem. Sus. Chem., 4, 432-449 (2011). https://doi.org/10.1002/cssc.201000416
  13. M. T. Mayer, Y. Lin, G. Yuan, and D. Wang, Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite, Accounts Chem. Res., 46, 1558-1566 (2013). https://doi.org/10.1021/ar300302z
  14. Y. Ling, G. Yuan, S. Sheehan, S. Zhou, and D. Wang, Hematite-based solar water splitting: challenges and opportunities, Energ. Environ. Sci., 4, 4862-4869 (2011). https://doi.org/10.1039/c1ee01850g
  15. F. L. Formal, M. Gratzel, and K. Sivula, Controlling photoactivity in ultrathin hematite films for solar water-splitting, Adv. Funct. Mater., 20, 1099-1107 (2010). https://doi.org/10.1002/adfm.200902060
  16. S. Shen, Toward efficient solar water splitting over hematite photoelectrodes, J. Mater. Res., 29, 29-46 (2014). https://doi.org/10.1557/jmr.2013.310
  17. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks, Nature, 396, 152-155 (1998). https://doi.org/10.1038/24132
  18. A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, The atmospheric-pressure plasma jet: a review and comparison to other plasma sources, IEEE T. Plasma Sci., 26, 1685-1694 (1998). https://doi.org/10.1109/27.747887
  19. H. M. Yang, W. K. Nam, and D. W. Park, Production of nano-sized carbon black from hydrocarbon by a thermal plasma, J. Nanosci. Nanotechno., 7, 3744-3749 (2007). https://doi.org/10.1166/jnn.2007.003
  20. S. J. Kim and D. W. Park, Preparation of ZnO nanopowders by thermal plasma and characterization of photo-catalytic property, Appl. Surf. Sci., 255, 5363-5367 (2009). https://doi.org/10.1016/j.apsusc.2008.10.028
  21. J. W. Park, D. W. Kim, H. S. Seon, K. S. Kim, and D. W. Park, Synthesis of carbon-doped TiO2 nanoparticles using CO2 decomposition by thermal plasma, Thin Solid Films, 518, 4113-4116 (2010). https://doi.org/10.1016/j.tsf.2009.11.013
  22. S. H. Lee, S. M. Oh, and D. W. Park, Preparation of silver nanopowder by thermal plasma, Mat. Sci. Eng. C-Bio. S., 27, 1286-1290 (2007). https://doi.org/10.1016/j.msec.2006.08.010
  23. C. Sasso, D. Beneventi, E. Zeno, M. P. Conil, D. Chaussy, and M. N. Belgacem, Carboxymethylcellulose: a conductivity enhancer and film-forming agent for processable polypyrrole from aqueous medium, Synthetic Met., 161, 397-403 (2011). https://doi.org/10.1016/j.synthmet.2010.12.017