DOI QR코드

DOI QR Code

PLLA-block-PMMA 공중합수지의 합성 및 이를 포함하는 PLA 이축연신 필름의 특성

Synthesis of PLLA-block-PMMA Copolymer and Characteristics of Biaxially Oriented PLA Film Including the Same

  • 김문선 (성균관대학교 과학기술연구소) ;
  • 이상은 (성균관대학교 화학공학과)
  • Kim, Moon-Sun (Institude of Science and Technology, Sungkyunkwan University) ;
  • Lee, Sangeun (Department of Chemical Engineering, Sungkyunkwan University)
  • 투고 : 2014.11.04
  • 심사 : 2015.04.14
  • 발행 : 2015.06.10

초록

본 연구에서는 L-lactide를 이용하여 수평균분자량(Mn)과 중량평균분자량($M_w$)이 각각 12,000, 14,000 g/mol인 PLLA (Poly L-lactic acid) 수지를 합성하였으며, 이 PLLA를 이용하여 PLLA-Br 중간체를 합성하였다. PLLA-Br 중간체를 이용하여 수평균분자량($M_n$)과 중량평균분자량($M_w$)이 각각 84,000, 126,000 g/mol인 PLLA-block-PMMA (Poly L-lactic acid-block-Polymethyl methacrylate) 공중합체를 최종적으로 합성하였으며 PLLA-block-PMMA 공중합체의 유리전이온도($T_g$)는 $95.5^{\circ}C$, 열분해 개시온도는 $289^{\circ}C$이었다. PLA에 PLLA-block-PMMA를 9 phr 혼용하고 $95^{\circ}C$에서 3배 이축연신한 다음 $120^{\circ}C$에서 2 min 동안 저온열처리하여 두께가 $50{\pm}3{\mu}m$인 PLA 필름을 제조하였다. 550 nm 파장에서 측정한 PLA 필름의 빛투과율은 88.5%, 인장강도는 44.5 MPa이었으며 PLA 필름의 인장강도를 현 수준보다 개선하기 위해서는 이축연신후 $120^{\circ}C$의 온도조건에서 2 min보다 긴 저온열처리시간이 필요하였다.

In the study, PLLA with 12,000 g/mol ($M_n$) and 14,000 g/mol ($M_w$) was synthesized from L-lactide, and used to synthesize PLLA-Br intermediate. PLLA-block-PMMA with 84,000 g/mol ($M_n$) and 126,000 g/mol ($M_w$) was finally synthesized from PLLA-Br intermediate. The glass transition temperature ($T_g$) and initial pyrolysis temperature of PLLA-block-PMMA are $95.5^{\circ}C$ and $289^{\circ}C$, respectively. The PLA film of $50{\pm}3{\mu}m$ thickness was prepared by blending PLA with 9 phr PLLA-block-PMMA followed by stretching biaxially at 3 times under $95^{\circ}C$, and annealing at $120^{\circ}C$ for 2 min. The light transmittance at 550 nm and tensile strength of the film are 88.5% and 44.5 MPa, respectively. To enhance the tensile strength of PLA film, it was required to keep the film more than 2 min at $120^{\circ}C$ during the annealing step after a biaxially orientation.

키워드

참고문헌

  1. G. S. Kim, M. S. Kim, and B. W. Kim, Study on isothermal crystallization characteristics of PLA film by adding APP as a nucleation agent, Korean Chem. Eng. Res., 50, 582-587 (2012). https://doi.org/10.9713/kcer.2012.50.3.582
  2. J. Kim, M. S. Kim, and B. W. Kim, Study on isothermal crystallization behavior and surface properties of non-oriented PLA film with annealing temperature, Korean Chem. Eng. Res., 49, 611-616 (2011). https://doi.org/10.9713/kcer.2011.49.5.611
  3. H. M. Park, M. Misra, L. T. Drzal, and A. K. Mohanty, "Green" nanocomposites from cellulose acetate bioplastic and clay: effect of eco-friendly triethyl citrate plasticizer, Biomacromolecules, 5, 2281-2288 (2004). https://doi.org/10.1021/bm049690f
  4. G. Perego, G. D. Cella, and C. Bastioli, Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties, J. Appl. Polym. Sci., 59, 37-43 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960103)59:1<37::AID-APP6>3.0.CO;2-N
  5. C. Y. Hung, C. C. Wang, and C. Y. Chen, Enhanced the thermal stability and rystallinity of polylactic acid (PLA) by incorporated reactive PS-b-PMMA-b-PGMA and PS-b-PGMA block copolymers as chain extenders, Polymer, 54, 1860-1866 (2013). https://doi.org/10.1016/j.polymer.2013.01.045
  6. S. H. Tabatabaei and A. Ajji, Crystal structure and orientation of uniaxially PLA and PP nanoclay composite films, J. Appl. Polym. Sci., 124, 4854-4863 (2012).
  7. G. S. Kim, M. S. Kim, and B. W. Kim, Effect on adding isopropylphenyl diphenyl phosphate on isothermal crystallization behavior and flame retardancy of PLA film, Appl. Chem. Eng., 23, 169-175 (2012).
  8. G. Zhang, J. Zhang, S. Wang, and D. Shen, Miscibility and phase structure of biary blends of polyactide and poly(methyl methacrylate), J. Polym. Sci. Part B., 41, 23-30 (2003). https://doi.org/10.1002/polb.10353
  9. K. P. Le, R. Lehman, J. Remmert, K. VanNess, P. M. L. Ward., and J. D. Idol, Multiphase blends from poly(L-lactide) and poly(methyl methacrylate), J. Biomate. Sci., Polym. Edn., 17, 121-137 (2006). https://doi.org/10.1163/156856206774879054
  10. D. Cossement, R. Gouttebaron, V. Cornet, P. Viville, M. Hecq, and R. Lazzaroni, PLA-PMMA blends: A study by XPS and ToF-SIMS, Appl. Surf. Sci., 252, 6636-6639 (2006). https://doi.org/10.1016/j.apsusc.2006.02.225
  11. S. H. Li and E. M. Woo, Immiscibility-misciblility phase transitions in blends of poly(L-lactide) with poly(methyl methacrylate), Polym. Int., 57, 1242-1261 (2008). https://doi.org/10.1002/pi.2469
  12. J. K. Oh, Polylactide (PLA)-based amphiphilic block copolymers: synthesis, self-assembly, and biomedical applications, Royal Soc. Chem., Doi:10.1039/c0sm01539c.
  13. C. P. Wu, C. C. Wang, and C. Y. Chen, Enhancing the PLA crystallization rate by incorporating a polystyrene-block-poly(methyl methacrylate) block copolymer: synergy of polystyrene and poly(methyl methacrylate) segments, Polym. Physics., Doi:10.1002/polb.23492.
  14. S. Kaihara, S. Matsumura, A. G. Mikos, and J. P. Fisher, Synthesis of poly(L-lactide) and polyglycolide by ring-opening polymerization, Nat. Protocol., 2, 2767-2771 (2007). https://doi.org/10.1038/nprot.2007.391
  15. C. Choochottiros, E. Park, and I. J. Chin, Synthesis and characterization of polylactide-poly(methyl methacrylate) copolymer by combining of ROP and AGET ATRP, J. Ind. Eng. Chem., 18, 993-1000 (2012). https://doi.org/10.1016/j.jiec.2011.11.153
  16. M. Bagheri and F. Motirasoul, Synthesis, characterization, and micellization of cholesteryl-modified amphiphilic poly(L-lactide)-block-poly(glycidyl methacrylate) as a nanocarrier for hydrophobic drugs. J. Polym. Res., Doi:10.1007/s10956-012-0059-3 (2013).
  17. C. Choochottiros and I. J. Chin, Potential transparent PLA impact modifiers based on PMMA copolymers, Eur. Polym. J., 49, 957-966 (2013). https://doi.org/10.1016/j.eurpolymj.2012.12.008
  18. S. W. Chun, S. H. Kim, Y. H. Kim, and H. J. Kang, Thermal properties of linear shape polylactic acid/star shape polylactic acid blends, Polymer(Korea), 24, 333-341 (2000).
  19. C. Wang, H. Li, and X. Zhao, Ring opening polymerization of L-lactide initiated by creatinine, Biomaterials, 25, 5797-5801 (2004). https://doi.org/10.1016/j.biomaterials.2004.01.030
  20. J. C. Wu, B. H. Huang, M. L. Hsueh, S. L. Lai, and C. C. Lin, Ring-opening polymerization of lactide initiated by magnesium and zinc alkoxides, Polymer, 46, 9784-9792 (2005). https://doi.org/10.1016/j.polymer.2005.08.009
  21. P. S. Umare, G. L. Tembe, K. V. Rao, U. S. Satpathy, and B. Trivedi, Catalytic ring-opening polymerization of L-lactide by titanium biphenoxy-alkoxide initiators, J. Mole. Catal., A268, 235-243 (2007).
  22. K. W. Lee, H. S. Park, and Y. H. Kim, Crystallization behavior and thermal property of poly(D-lactic acid-b-L-lactic acid), Text. Sci. Eng., 47, 406-413 (2010).
  23. B. C. Ji, W. S. Yoon, and S. Y. Kim, Structure and properties of zone-drawn PET film (I), J. Korean Fiber Soc., 30, 328-334 (1993).
  24. B. C. Ji, W. S. Yoon, and S. Y. Kim, Structure and properties of zone-drawn PET film (II), J. Korean Fiber Soc., 30, 379-387 (1993).
  25. J. G. Lee, S. H. Park, and S. H. Kim, Investigation of properties of the PET film dependent on the biaxial strectching, Polymer(Korea), 34, 579-587 (2010).