DOI QR코드

DOI QR Code

Effect of Nutrients on Competition among the Harmful Dinoflagellates Cochlodinium polykrikoides and the Diatom Skeletonema sp. in Jaran Bay Using a Mathematical Model

수치모델을 활용한 자란만에서 유해 와편모조류 Cochlodinium polykrikoides와 규조류 Skeletonema sp.의 경쟁에 미치는 영양염의 영향

  • Oh, Seok Jin (Department of Oceanography, Pukyong National University) ;
  • Kim, Hyun Jung (Department of Oceanography, Pukyong National University) ;
  • Kwon, Hyeong Kyu (Korea Inter-University Institute of Ocean Science, Pukyong National University) ;
  • Yang, Han-Soeb (Department of Oceanography, Pukyong National University) ;
  • Kim, Seok Yoon (Department of Oceanography, Pukyong National University)
  • Received : 2015.02.05
  • Accepted : 2015.05.11
  • Published : 2015.05.31

Abstract

We investigated cause of non-outbreak of Cochlodinium polykrikoides blooms in the western coast of Jaran Bay during summer, 2013, based on the species competition among C. polykrikoides and Skeletonema sp. using a mathematical model. As a result of the model simulation where the nutrient conditions in Jaran Bay was applied during summer, the cell density of Skeletonema sp. was higher than that of C. polykrikoides. In the sensitivity analyses by doubling and halving the parameters, any parameter had little effect on the cell density of C. polykrikoides. The cell density of Skeletonema sp. was significantly affected by changes in the parameter values. These results indicated that the growth of C. polykrikoides could be unaffected by rapidly changing environments. However, the growth of Skeletonema sp. may have been promoted by the changing nutrient supply of coast environments. Therefore, C. polykrikoides might have been suppressed by diatom blooms, such as Skeletonema sp., in changing nutrient supply condition of Jaran Bay.

수치모델을 활용한 Cochlodinium polykrikoides와 Skeletonema sp.의 영양염에 대한 종간경쟁을 바탕으로 2013년 하계 자란만에서 C. polykrikoides의 적조 미발생 원인을 고찰하였다. 2013년 하계 자란만의 영양염 조건을 모델에 적용시킨 결과, 실제 현장과 유사하게 Skeletonema sp.의 세포밀도는 C. polykrikoides보다 높았다. 또한 다양한 변수에 대한 민감도 분석에서, C. polykrikoides는 어떠한 변수의 변화에도 일정한 세포밀도를 보였으며, Skeletonema sp.의 세포밀도는 영양염 농도의 증 감에 민감하게 반응하였다. 이러한 결과를 통해 C. polykrikoides는 급격한 환경변화에도 영향을 받지 않고 생장을 유지할 수 있을 것이다. 하지만 영양염 공급이 변화하는 연안환경에서는 Skeletonema sp.의 생장이 촉진될 수 있을 것이다. 따라서 외부로부터 영양염의 공급이 크게 변화하는 자란만에서 Skeletonema sp.와 같은 규조류의 번무에 따라서 C. polykrikoides의 출현이 억제된 것으로 보인다.

Keywords

References

  1. Arrigo, K.R., 2004. Marine microorganisms and global nutrient cycles. Nature, 437: 349-355.
  2. Borchardt, M.A., 1996. Nutrients. In: Algal Ecology: Freshwater Benthic Ecosystems, edited by Stevenson, R.J., M.L. Bothwell and R.L. Lowe, pp. 184-228.
  3. Bronk, D.A., 2002. Dynamics of organic nitrogen. In: Biogeochemistry of marine dissolved organic matter, edited by Hansell, D.A. and A.C. Craig, Academic Press, San Diego, pp. 153-247.
  4. Cembella, A.D., N.J. Antia and P.J. Harrison, 1984. The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspectitive: Part I. CRC Crit. Rev. Microbiol, 10: 317-391.
  5. Conway, H.L. and P.J. Harrison, 1977. Marine diatoms grown in chemostats under silicate or ammonium limitation. IV. Transient response of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida to a single addition of the limiting nutrient. Mar. Biol., 43: 33-43. https://doi.org/10.1007/BF00392569
  6. Cullen, J.J., X. Yang and H.L. MacIntyre, 1992. Nutrient limitation of marine photosynthesis. In: Primary productivity and biogeochemical cycles in the sea, edited by Falkowski, P.G. and A. Woodhead, Plenum Press, New-York, pp. 69-88.
  7. Dugdale, M.R., 1967. Nutrient limitation in the sea: dynamics, identification and significance. Limnol. Oceanogr., 12: 685-695. https://doi.org/10.4319/lo.1967.12.4.0685
  8. Droop, M.R., 1973. Some thoughts on nutrient limitation in algae1. J. Phycol., 9: 264-272.
  9. Dugdale, R.C., B.H. Jones Jr, J.J. MacIsaac and J.J. Goering, 1981. Adaptation of nutrient assimilation. Can. Bull. Fish. Aquat. Sci., 201: 234-250.
  10. Doblin, M.A., S.I. Blackburn and G.M. Hallegraeff, 1999. Growth and biomass stimulation of the toxic dinoflagellate Gymnodinium catenatum (Graham) by dissolved organic substances. J. Exp. Mar. Biol. Ecol., 236: 33-47. https://doi.org/10.1016/S0022-0981(98)00193-2
  11. Jeong, H.J. J.H. Shim, J.S. Kim, J.Y. Park, C.W. Lee and Y. Lee, 1999. Feeding by the mixotrophic thecate dinoflagellate Fragilidium cf. mexicanum on red-tide and toxic dinoflagellates. Mar. Ecol. Prog. Ser., 176: 263-277. https://doi.org/10.3354/meps176263
  12. Jeong, H.J., Y.D. Yoo, J.S. Kim, T.Y. Kim, J.H. Kim, N.S. Kang and W.H. Yih, 2004. Mixotrophy in the phototrophic harmful alga Cochlodinium polykrikoides (Dinophycean): prey species, the effects of prey concentration, and grazing impact. J. Eukuryot. Microb., 51: 563-569. https://doi.org/10.1111/j.1550-7408.2004.tb00292.x
  13. Justic, D., N.N. Rabalais, R.E. Turner and Q. Dortch, 1995. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estua. Coast. Shelf Sci., 40: 339-356. https://doi.org/10.1016/S0272-7714(05)80014-9
  14. Keller, M.D., R.C. Selvin, W. Claus and R.R..L. Guillard, 1987. Media for the culture of oceanic ultraphytoplankton. J. Phycol., 23: 633-638.
  15. Kim, D.I., T. Matsubara, S.J. Oh, Y. Shimasaki, Y. Oshima and T. Honjo, 2007. Effects of nitrogen and phosphorus sources on the utilization and growth kinetics of the harmful dinoflagellate Cochlodinium polykrikoides isolated from Yatsushiro Sea, Japan. Nippon Suisan Gakkaishi, 73: 711-717. https://doi.org/10.2331/suisan.73.711
  16. Kwon, H.K., J.A. Park, H.S. Yang and S.J. Oh, 2013. Dominance and survival strategy of toxic dinoflagellate Alexandrium tamarense and Alexandium catenella under dissolved inorganic nirtogen-limited conditions. J. Korean Soc. Mar. Environ. Ener., 16: 25-35. https://doi.org/10.7846/JKOSMEE.2013.16.1.25
  17. Kwon, H.K., H.J. Kim, H.S. Yang and S.J. Oh, 2014a. Non-outbreak cause of Cochlodinium Bloom in the western coast of Jaran Bay, 2013: On the basis of nutrient data. J. Kor. Soc. Mar. Environ. Safe., 20: 372-381. https://doi.org/10.7837/kosomes.2014.20.4.372
  18. Kwon, H.K., H.J. Kim, H.S. Yang and S.J. Oh, 2014b. The importance of dissolved organic nutrient on the interspecitic competition between the harmful dinoflagellate Cochlodinium polykrikoides and the diatom Skeletonema sp. J. Kor. Soc. Mar. Oceanogr. The Sea, 19: 232-242.
  19. Lehman, J.T., D.B. Botkin and G.E. Likens, 1975. The assumptions and rationales of a computer model of phytoplankton population dynamics. Limnol. Oceanogr., 20: 343-364. https://doi.org/10.4319/lo.1975.20.3.0343
  20. Mann, K.H., 2000. Ecology of coastal waters: with implications for management. Wiley-Blackwell, pp. 432.
  21. MIFAFF (Ministry of Food, Aquriculture, Forestry and Fisheries), 2008. Qnnual report of KSSP(Korea Shellfish Sanitation Program) for 2007. MIFAFF, pp. 3-5.
  22. MLTM (Ministry of Land, Transportation and Marine Affairs, Korea), 2010. Standard methods for marine environmental analysis. Seoul, pp. 495.
  23. Noh, I.H., Y.H. Yoon, J.S. Park, L.S. Kang, Y.K. An and S.H. Kim, 2010. Seasonal fluctuations of marine environment and phytoplankton community in the southern part of Yeosu, southern sea of Korea. J. Kor. Soc. Mar. Environ. Eng., 13: 151-164.
  24. Oh, S.J., 2002. DOP utilization by the two toxic dinoflagellates, Alexandrium tamarense and Gymnodinium catenatum, and its advantage in species competition. Ph. D. Thesis, Hiroshima University, Hiroshima, Japan, pp. 115.
  25. Park, M.G. J.H. Shim and B.C. Cho, 1993. Adaptation of estuarine and freshwater phytoplankton to urea decomposition. J. Oceano. Soc. Kor., 28: 323-331.
  26. Porter, K.G. and Y.S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25: 943-948. https://doi.org/10.4319/lo.1980.25.5.0943
  27. Provasoil, L., K. Shiraishi and J.R. Lance, 1959. Nutritional idiosyncrasies of Artemia and Tigriopus in monoxenic culture. Ann. N. Y. Sci., 77: 250-261.
  28. Ryther, J.H. and W.M. Dunstan, 1971. Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Sci., 171: 1008-1013. https://doi.org/10.1126/science.171.3975.1008
  29. Sommer, U., 1989. The role of competition for resources in phytoplankton succession. In: Plankton Ecology: Succession in Plankton Communities, edited by Sommer, U., Springer-Verlag, New-York, pp. 57-106.
  30. Tarutani, K. and T. Yamamoto, 1994. Phosphate uptake and growth kinetics of Skeletonema costatum (Bacillariophyceae) isolated from Hiroshima bay (in Japan). J. Faculty of Applied Biological Science-Hiroshima University (Japan).
  31. Tarutani, K. 1997. Ecophysiological studies on the population dynamics of toxic dinoflagellate Alexandrium tamarense. Ph.D. Thesis, University of Hiroshima, Higashi-Hiroshuma.
  32. Tilman, D., 1981. Tests of resource competition theory using four species of Lake Michigan algae. Ecol., 62: 802-815. https://doi.org/10.2307/1937747
  33. Tilman, D., 1982. Resource Competition and Community Structure. Princeton University Press, Princeton, pp. 296.
  34. Yamamoto, T. and K. Tarutani, 1999. Growth and phosphate uptake kinetics of the toxic dinoflagellate Alexandrium tamarense from Hiroshima Bay in the Seto Inland Sea, Japan. Phycol. Res., 47: 27-32. https://doi.org/10.1111/j.1440-1835.1999.tb00280.x

Cited by

  1. Distributions of Organic Matter and Heavy Metals in the Surface Sediment of Jaran Bay, Korea vol.24, pp.1, 2018, https://doi.org/10.7837/kosomes.2018.24.1.078
  2. Estimation of Land-Based Pollution Loads to Jaranman·Saryang Island areas for export using a Watershed Model vol.22, pp.4, 2015, https://doi.org/10.7846/jkosmee.2019.22.4.226
  3. Terrestrial anaerobic digestate composite for fertilization of oligotrophic coastal seas vol.293, pp.None, 2015, https://doi.org/10.1016/j.jenvman.2021.112944