DOI QR코드

DOI QR Code

Electrochemical Characteristics in Sea Water of Al-3%Mg Arc Spray Coating Layer for Corrosion Protection with Sealing Treatment

후처리 적용에 따른 방식용 Al-3%Mg 용사코팅 층의 해수 내 전기화학적 특성

  • Park, Il-Cho (Division of Marine Engineering, Mokpo National Maritime University) ;
  • Kim, Seong-Jong (Division of Marine Engineering, Mokpo National Maritime University)
  • Received : 2015.04.02
  • Accepted : 2015.05.19
  • Published : 2015.05.31

Abstract

Arc thermal spray coating using Al-3%Mg thermal spray wire was carried out to prevent steel from corrosion damage under the marine environment. Post-sealing was applied to Al-3%Mg spray coating treatment using organic/inorganic composite ceramics in order to improve the corrosion resistance of the as-sprayed coating. The results of various electrochemical experiments with sealing treatment indicated that the improvement in corrosion resistance was observed due to low current density in all applied potential range during anodic and cathodic polarization experiments. Futhermore, the natural potential measurement exhibited severe potential fluctuation due to influence of micro-crack presence on the surface of sealed thermal spray coating layer. In addition, the sealed layer was easily eliminated during anodic polarization. Nevertheless, Al-3%Mg spray coating layer improved corrosion resistance by sealing treatment because the sealed coating efficiency was determined to be 92.11%, indicating the exterior environment barrier effect which is based on the Tafel analysis.

해양환경 하에서 강재에 대한 방식 목적으로 Al-3%Mg 용사선재를 이용하여 아크 용사코팅을 실시하였다. 그리고 Al-3%Mg 용사코팅 층의 내식성을 개선하기 위하여 유/무기 복합 세라믹 후처리를 실시하였다. 후처리 적용에 따른 용사코팅 층의 다양한 전기화학적 실험 결과, 양극분극과 음극분극 실험 시 모든 전위구간에서 후처리 적용 시 전류밀도가 작게 나타나 내식성 개선이 확인되었다. 그리고 후처리된 용사코팅 층의 표면에서 관찰된 마이크로 크랙의 영향으로 자연전위 계측 시 심한 전위변동이 나타났으며, 양극분극 실험 시에는 후처리 층의 탈리손상이 용이하게 발생하였다. 그럼에도 불구하고 타펠분석을 기반으로 외부 환경차단 효과를 나타내는 코팅 효율이 92.11%로 산출되어 Al-3%Mg 용사코팅 층의 내식성이 향상되었다.

Keywords

References

  1. R. H. Unger, "Thermal Spraying of Bridges," National Thermal Spray Conf., pp. 399-406, Florida, USA, 1987.
  2. K. J. Altorfer, Atmospheric Corrosion, John Wiley and Sons, (645-650), 1982.
  3. D. Grasme, "Deutscher Verlag fuer Schweisstechnik DVS-Verlag GmbH," Thermal Spraying Conf., pp. 188-191, 1993.
  4. S. Kawahara and R. Sumida, "R. Nippon yosha kyokai shi," J. TSS, vol. 31, no. 1, pp. 37-42, 1994.
  5. S. J. Kim and S. J. Lee, "Effects of F-Si sealer on electrochemical characteristics of 15%Al-85%Zn alloy thermal spray coating," Trans. Nonferrous Metal Soc. Ch., vol. 21, pp. 2798-2804, 2011. https://doi.org/10.1016/S1003-6326(11)61126-6
  6. J. H. Baek, J. H. Lee, M. G. Lee, C. S. Suh, S. T. Kwak, and M. J. Moon, "Characterization of adhesion and preparation of functionalized organic-inorganic hybrid epoxy coatings," J. Kor. Soc. Imag. Sci. Tech., vol. 12, no. 2, pp. 53-60, 2006.
  7. M. S. Han, S. J. Lee, S. K. Jang, and S. J. Kim, "Electrochemical and cavitation characteristics of Al thermal spray coating with F-Si sealing," Corros. Sci. Tech., vol. 9, no. 6, pp. 317-324, 2010.
  8. S. J. Kim and S. K. Jang, "Mechanical and electrochemical characteristics in welding with robot on 6061-T6 Al alloy for Al ship," J. KOSME, vol. 33, no. 2, pp. 313-321, 2009.
  9. S. Liscano, L. Gil, and M. H. Staia, "Effect of sealing treatment on the corrosion resistance of thermal-sprayed ceramic coatings," Surf. Coat. Tech., vol. 188-189, pp. 135-139, 2004. https://doi.org/10.1016/j.surfcoat.2004.08.009
  10. Z. Liu, D. Yan, Y. Dong, Y. Yang, Z. Chu, and Z. Zhang, "The effect of modified epoxy sealing on the electrochemical corrosion behaviour of reactive plasma-sprayed TiN coatings," Corros. Sci., vol. 75, pp. 220-227, 2013. https://doi.org/10.1016/j.corsci.2013.05.031
  11. S. J. Kim, S. J. Lee, I. J. Kim, S. K. Kim, M. S. Han, and S. K. Jang, "Cavitation and electrochemical characteristics of thermal spray coating with sealing material," Trans. Nonferrous Metal Soc. Ch., vol. 23, pp. 1002-1010, 2013. https://doi.org/10.1016/S1003-6326(13)62559-5
  12. S. J. Kim and J. I. Kim, "Evaluating the electrochemical properties in the protection potential of material for use in Al vessels in seawater," Mater. Sci. Forum, vol. 510-511, pp. 158-161, 2006.
  13. S. J. Kim, S. K. Jang, and J. I. Kim, "Characteristics evaluation of thin films formed in Mg-Al alloy in various chemical conversion solution conditions," J. KOSME, vol. 29, no. 1, pp. 98-106, 2005.
  14. P. Siitonen, S. L. Chen, K. Niemi, and P. Vuoristo, "Electrochemical method for evaluating the corrosion resistance and porosity of thermal sprayed coatings," Int. Thermal Spray Conf,, pp. 853-858, Orlando, USA, Jun. 1992.
  15. Y. J. Yu, J. G. Kim, and S. H. Cho, "Plasma-polymerized toluene films for corrosion inhibition in microelectronic devices," Surf. Coat. Tech., vol. 162, pp. 161-166, 2003. https://doi.org/10.1016/S0257-8972(02)00582-0
  16. Y. H. Yoo, D. P. Le, and J. G. Kim, "Corrosion behavior of TiN, TiAlN, TiAlSiN thin films deposited on tool steel in the 3.5 wt.% NaCl solution," Thin Solid Films, vol. 516, pp. 3544-3548, 2008. https://doi.org/10.1016/j.tsf.2007.08.069