DOI QR코드

DOI QR Code

마이크로스트립 라인을 이용한 UWB 원형 패치 안테나 설계 및 분석

Design and Analysis of UWB Circular Patch Antenna Using Microstrip Line

  • Kim, Jin-Ju (Chosun University Department of Information and Communication Engineering) ;
  • Kim, Sun-Woong (Chosun University Department of Information and Communication Engineering) ;
  • Park, Jung-Jin (Chosun University Department of Information and Communication Engineering) ;
  • Jeong, Min-A (Mokpo National University, Department of Computer Engineering) ;
  • Park, Kyung Woo (Mokpo National University, Department of Computer Engineering) ;
  • Choi, Dong-You (Chosun University Department of Information and Communication Engineering)
  • 투고 : 2015.04.02
  • 심사 : 2015.05.14
  • 발행 : 2015.05.31

초록

제안된 UWB 원형 패치 안테나는 FCC에서 규정한 3.1 ~ 10.6 GHz 대역에서 25% 이상의 상대적 대역폭을 갖도록 유도하였다. 안테나는 일반적인 마이크로스트립 라인과 선형적으로 임피던스가 변하는 마이크로스트립 라인의 두 가지 구조를 통해 광대역 특성을 유도하였다. 최종 제안된 안테나는 Ansys사의 HFSS를 화용하여 유전율 4.7, 손실 탄젠트 0.02, 두께 1.6 mm를 갖는 FR4_epoxy 기판에 설계되었다. 안테나 분석을 위하여 주파수 영역에서의 반사손실, VSWR, 방사패턴 및 이득을 시뮬레이션을 하였다. 분석한 결과 2.28 ~ 13.35 GHz 대역에서 -10 dB 반사손실 및 $VSWR{\leq}2$를 만족하여 약 11.89 GHz의 대역폭을 보였으며, 방사패턴은 전 대역에서 모두 무지향성의 특성을 보였다. 안테나의 이득은 2 ~ 8 GHz 대역에서 점차적으로 증가하여 8 GHz에서 7.92 dBi의 가장 큰 이득의 특성을 보였으며, 9 ~ 12 GHz 대역에서 점차적으로 이득이 감소하는 특성을 보였다.

The proposed circular patch antenna was designed to include relative bandwidth of above 25% as designed by the FCC in the FCC in the 3.1 ~ 10.6 GHz band. The antenna was induced to have a wide band characteristic through two structures of the usual microstrip line and a microstrip line with a linear change in impedance. The proposed finally antenna was designed using an FR4_epoxy substrate with 4.7% permittivity, 0.02 of loss tangent, and 1.6 mm of thickness, and was simulated with the use of HFSS made by Ansys. Return loss at frequency, VSWR, radiation pattern and the gain of the antenna were analysed. As a result, if satisfied a return loss of -10 dB and $VSWR{\leq}2$ from 2.28 ~ 13.35 GHz, showing about the bandwidth of 11.89 GHz, and the radiation pattern was unidirectional in all bands. The antenna gain gradually increased from 2 ~ 8 GHz and had the highest gain of 7.92 dBi at 8 GHz. and the gain gradually decreased in the 9 ~ 12 GHz band.

키워드

참고문헌

  1. W. Zuang, X. Shan, and Q. Bi, "Ultra-wideband wireless communication," Wirel Commun. Mob. Comput., vol. 3, pp. 663-685, 2003. https://doi.org/10.1002/wcm.149
  2. M. A. Peyrot-Solis, G. M. Galvan-Tejada, and H. Jardon-Agular, "A novel planar uwb monopole antenna formed on a printed circuit board," Microwave and Optical Technol. Lett., vol. 5, pp. 933-935, May 2006.
  3. S. Hong, K. Chung, J. Lee, S. Jung, S. S. Lee, and J. Choi, "Design of a diversity antenna with stubs for UWB application," Microwave and Optical Technology Lett., vol. 50, no. 50, pp. 1352-1356, Mar. 2008. https://doi.org/10.1002/mop.23389
  4. K, H. Lee, E. H. Kwak, and B. G. Kim, "Effect of substrate thickness, perforation position and size on the bandwidth and radiation characteristics of a proximity coupled perforated microstrip patch antenna," J. KICS, vol. 39A, no. 6, pp. 301-321, Jun. 2014.
  5. D. Y. Choi, S. W. Kim, J. J. Park, M. A. Jeong, and S. R. Lee, "Design and Implementation of Tapered Slot Antenna for Ship's Indoor Location-Aware System," J. KICS, vol. 39C, no. 12, pp. 1307-1313, Dec. 2014. https://doi.org/10.7840/kics.2014.39C.12.1307
  6. K. Y. Kim, "Design of UWB beam scanning antenna systems based on time domain analysis," Ph.D. Dissertation, Electronic Engineering, Kwangwoon Univ., Dec. 2013.
  7. K. J. Jeon, B. H. Ko, S. C. Myung, S. R. Lee, and K. S. Kim, "Protograph-based block LDPC code design for marine satellite communications," J. KICS, vol. 39C, no. 7, pp. 515-520, Jul. 2014. https://doi.org/10.7840/kics.2014.39C.7.515
  8. S. Shrestha, S. K. Noh, and D. Y. Choi, "Comparative study of antenna design for RF energy harvesting," Int. J. Ant. Propaga., vol. 2013, pp. 1-10, 2013.
  9. D. Y. Choi, Sika Shrestha, J. J. Park, and S. N. Noh, "Design and performance of an efficient rectenna incorporating a fractal structure," Int. J. Commun. Syst., vol. 2014, no. 27, pp. 1-19, Jul. 2014.
  10. K. Chang, RF and Microwave Wireless System, NY: WILEY, pp. 74-75, 2000.

피인용 문헌

  1. Analysis of Tapered Slot Antenna for UWB with Directivity Characteristic vol.20, pp.4, 2016, https://doi.org/10.6109/jkiice.2016.20.4.691
  2. 자기상보 구조를 갖는 초광대역 다이폴 안테나 vol.41, pp.11, 2015, https://doi.org/10.7840/kics.2016.41.11.1414
  3. IR-UWB 레이더 센서 기반 수면 효율 측정 알고리즘 vol.42, pp.1, 2015, https://doi.org/10.7840/kics.2017.42.1.214
  4. WLAN 노치 대역 특성을 갖는 UWB 육각형 패치 안테나 vol.42, pp.1, 2015, https://doi.org/10.7840/kics.2017.42.1.286
  5. Design of Ultra-Wide Band Antenna with Compact MCR Structure for BW Enhancement vol.42, pp.4, 2015, https://doi.org/10.7840/kics.2017.42.4.798