Abstract
In this paper, we are interested in a generalization of zero-knowledge interactive protocols between prover and verifier, especially to show that the product of an encrypted polynomial and a random polynomial, but published by a secure commitment scheme was correctly computed by the prover. To this end, we provide a generalized protocol for proving that the resulting polynomial is correctly computed by an encrypted polynomial and another committed polynomial. Further we show that the protocol is also secure in the random oracle model. We expect that our generalized protocol can play a role of building blocks in implementing secure multi-party computation including private set operations.
본 논문에서는 미리 알려진 임의의 다항식과 암호화된 다항식의 곱셈을 수행한 후, 해당 곱셈이 정당하게 수행되었음을 보이기 위해 증명자 (Prover)와 검증자 (Verifier)간의 다항식 상등성 영지식증명 (Zero-knowledge Proof) 프로토콜을 일반화할 수 있는 방법을 다룬다. 이를 위하여 다항식의 상등성을 증명하는 일반화된 프로토콜을 제시하고 랜덤오라클 (Random Oracle) 모델에서 안전성을 증명한다. 이러한 기법은 안전한 집합연산 기법을 포함하여 다항식에 기반한 다자간 연산기법 (Secure Multi-party Computation)에 적용될 수 있다.