DOI QR코드

DOI QR Code

A Study on the Relationship between Internet Search Trends and Company's Stock Price and Trading Volume

인터넷 검색트렌드와 기업의 주가 및 거래량과의 관계에 대한 연구

  • Koo, Pyunghoi (Division of Systems Management and Engineering, Pukyong National University) ;
  • Kim, Minsoo (Division of Systems Management and Engineering, Pukyong National University)
  • Received : 2015.01.12
  • Accepted : 2015.05.13
  • Published : 2015.05.31

Abstract

In this paper, we investigate the relationship between Internet search trends and stock market. Under the assumption that investors may use Internet search engine to obtain information for companies of their interests before taking actual investment actions, the relationship between the changes on Internet search volume and the fluctuation of trading volume as well as stock price of a company is analyzed with actual market data. A search trend investment strategy that reflects the changes on Internet search volume is applied to large enterprises' group and to small and medium enterprises' (SMEs) group, and the correlation between profit rate and trading volume is analyzed for each company group. Our search trend investment strategy has outperformed average stock market returns in both KOSPI and KOSDAQ markets during the seven-year study period (2007~2013). It is also shown that search trend investment strategy is more effective to SMEs than to large enterprises. The relationship between changes on Internet search volume and stock trading volume is stronger at SMEs than at large enterprises.

본 논문에서는 인터넷 검색 추세와 주식시장 사이에 어떤 관계가 있는지를 알아보고자 한다. 관심 기업의 정보를 얻기 위하여 투자자가 인터넷 검색엔진을 활용하고 이것이 실제 투자로 이어질 수 있다는 가정에서, 기업에 대한 검색량의 변화가 해당 기업의 주가 및 거래량 변동과 어떤 관계성이 있는지를 실제 데이터를 통해 분석하였다. 검색량의 변화를 기초로 한 검색트렌드 투자전략을 대기업 그룹과 중소기업 그룹에 적용하여, 두 그룹의 수익률 등락과 주식거래량에 대한 상관관계를 분석하였다. 7년(2007년~2013년)간의 데이터를 기초로 KOSPI와 KOSDAQ 모두에서 검색트렌드 투자전략이 시장의 평균 수익률 이상을 실현하고, 대기업보다는 중소기업에서 더 투자효과가 높다는 결과를 얻었다. 검색량과 주식거래량의 관계 또한 대기업보다는 중소기업이 더 영향을 받는다는 것을 알 수 있었다.

Keywords

References

  1. Biswas, S., Yoo, J. H., and Jung, C. Y., "A Study on Priorities of the Components of Big Data Information Security Service by AHP," Journal of Society for e-Business Studies, Vol. 18, No. 4, 2013.
  2. Bollen, J., Mao, H., and Zeng, X. J., "Twitter mood predicts the stock market," Journal of Computational Science, Vol. 2, No. 1 pp. 1-8, 2011. https://doi.org/10.1016/j.jocs.2010.12.007
  3. Bordino, I., Battiston, S., Caldarelli, G., Cristelli, M., Ukkonen, A., and Weber, I., "Web search queries can predict stock market volumes," PLOS One, Vol. 7, No. 7, pp. 1-17, 2012.
  4. Choi, H. and Varian, H., "Predicting Initial Claims for Unemployment Insurance Using Google Trends," Technical Report, Google, 2009.
  5. Choi, H. and Varian, H., "Predicting the present with Google Trends," The Economic Record, Vol. 88, pp. 2-9, 2012. https://doi.org/10.1111/j.1475-4932.2012.00809.x
  6. Choi, S. and Kwon, O., "The Study of Developing Korean SentiWordNet for Big Data Analytics: Focusing on Anger Emotion," Journal of Society for e-Business Studies, Vol. 19, No. 4, pp. 1-19, 2014. https://doi.org/10.7838/JSEBS.2014.19.4.001
  7. Cooper, C., Mallon, K., Leadbetter, S., Pollack, L., and Peipins, L., "Cancer Internet Search Activity on a Major Search Engine, United States 2001-2003," Journal of Medical Internet Research, Vol. 7, No. 3, 2005.
  8. Ettredge, M., Gerdes, J., and Karuga, G., "Using Web-based search data to predict macroeconomic statistics," Communications of the ACM, Vol. 48, No. 11, pp. 87-92, 2005. https://doi.org/10.1145/1096000.1096010
  9. Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., and Brilliant, L., "Detecting influenza epidemics using search engine query data," Nature, Vol. 457, pp. 1012-1014, 2009. https://doi.org/10.1038/nature07634
  10. Goel, S., Hofman, J. M., Lahaie, S., Pennock, D. M., and Watts, D. J., "Predicting consumer behavior with Web search," Proceedings of the National Academy of Sciences, Vol. 7, No. 41, pp. 17486-17490, 2010.
  11. Kim, M. and Koo, P., "A Study on Big Data Based Investment Strategy Using Internet Search Trends," Journal of the Korean Operations Research and Management Science Society, Vol. 38, No. 4, pp. 53-63, 2013. https://doi.org/10.7737/JKORMS.2013.38.4.053
  12. McLaren, L. and Shanbhogue, R., "Using internet search data as economic indicator," Quarterly Bulletin, Q2, pp. 134-140, 2011.
  13. Min, G. Y. and Jeong, D. H., "Research on Assessment of Impact of Big Data Attributes to Disaster Response Decision- Making Process," Journal of Society for e-Business Studies, Vol. 18, No. 3, 2013.
  14. Moat, H. S., Curme, C., Avakian, A., Kenett, D. Y., Stanley, E., and Preis, T., "Quantifying Wikipedia usage patterns before stock market moves," Scientific Report, Vol. 3, pp. 01801 : 1-5, 2013. https://doi.org/10.1038/srep01801
  15. National Information Society Agency (Korea), New Value-Creation Engine, Big Data's New Possibility and Response Strategy, IT & Future Strategy, Vol. 18, 2011.
  16. Parikh, P., VALUE INVESTING and BEHAVIORAL FINANCE: Insights into Indian Stock Market Realities, Tata McGraw-Hill Education, 2009.
  17. Polgreen, P. M., Chen, Y., Pennock, D. M., and Nelson, F. D., "Using Internet Searches for Influenza Surveillance," Healthcare Epidemiology, Vol. 47, pp. 1443-1448, 2008.
  18. Preis, T., Moat, H. S., and Stanley, H. E., "Quantifying trading behavior in financial markets using Google Trends," Scientific Report, Vol. 3, pp. 01684 : 1-5, 2013. https://doi.org/10.1038/srep01684
  19. Preis, T., Moat, H. S., Stanley, H. E., and Bishop, S. R., "Quantifying the Advantage of Looking Forward," Scientific Report, Vol. 2, pp. 00350 : 1-2, 2012. https://doi.org/10.1038/srep00350
  20. Preis, T., Reith, D., and Stanley, H. E., "Complex dynamics of our economic life on different scales: insights from search engine query data," Philosophical Transactions of the Royal Society, Vol. 368, pp. 5707-5719, 2010. https://doi.org/10.1098/rsta.2010.0284
  21. Song, M., Business Future Map That Big Data Builds, Hans Media, 2012.
  22. Suzuki, R., The Age of Big Data Business, The Soup, 2012.
  23. Yoon, H., Now Its Big Data Era, eBiz Books, 2012.

Cited by

  1. Does Internet Search Volume Predict Market Returns and Investors’ Trading Behavior? vol.20, pp.3, 2019, https://doi.org/10.1080/15427560.2018.1511561