DOI QR코드

DOI QR Code

Estimation of Hurst Parameter in Longitudinal Data with Long Memory

  • Kim, Yoon Tae (Department of Finance and Information Statistics, Hallym University) ;
  • Park, Hyun Suk (Department of Finance and Information Statistics, Hallym University)
  • Received : 2015.03.18
  • Accepted : 2015.05.13
  • Published : 2015.05.31

Abstract

This paper considers the problem of estimation of the Hurst parameter H ${\in}$ (1/2, 1) from longitudinal data with the error term of a fractional Brownian motion with Hurst parameter H that gives the amount of the long memory of its increment. We provide a new estimator of Hurst parameter H using a two scale sampling method based on $A{\ddot{i}}t$-Sahalia and Jacod (2009). Asymptotic behaviors (consistent and central limit theorem) of the proposed estimator will be investigated. For the proof of a central limit theorem, we use recent results on necessary and sufficient conditions for multi-dimensional vectors of multiple stochastic integrals to converges in distribution to multivariate normal distribution studied by Nourdin et al. (2010), Nualart and Ortiz-Latorre (2008), and Peccati and Tudor (2005).

Keywords

References

  1. Ait-Sahalia, Y. and Jacod, J. (2009). Testing for jumps in a discretely observed process, Annals of Statistics, 37, 184-222. https://doi.org/10.1214/07-AOS568
  2. Beran, J. (1994). Statistics for Long Memory Processes, Chapman and Hall, London.
  3. Nourdin, I. (2013). Lectures on Gaussian Approximations with Malliavin Calculus, In: Seminaire de Probabilites XLV, Lecture Notes in Mathematics 2078, DOI 10.1007/978-3-319-00321-41.
  4. Nualart, D. (2006). Malliavin Calculus and Related Topics, 2nd Ed. Springer.
  5. Nourdin, I., Peccati, G. and Reveillac, A. (2010). Multivariate normal approximnation using Stein's method and Malliavin calculus, Annales de l' Institut Henri Poincar′e-Probabilities et Statistiques, 46, 45-58. https://doi.org/10.1214/08-AIHP308
  6. Nualart, D. and Ortiz-Latorre, S. (2008). Central limit theorems for multiple stochastic integrals and Malliavin calculus, Stochastic Processes and their Applications, 118, 614-628. https://doi.org/10.1016/j.spa.2007.05.004
  7. Peccati, G. and Tudor, C. A. (2005). Gaussian limits for vector-valued multiple stochastic integrals. In: Seminaire de Probabilites XXXVIII. Lecture Notes in Math., 1857, 247-262. Springer, Berlin.

Cited by

  1. Convergence rate of a test statistics observed by the longitudinal data with long memory vol.24, pp.5, 2017, https://doi.org/10.5351/CSAM.2017.24.5.481