References
- Adler, R. J. (1990). An Introduction to Continuity, Extreme, and Related Topics for General Gaussian Processes, Institute of Mathematical Statistics, Hayward.
- Albin, J. M. P. and Choi, H. (2010). A new proof of an old result by Pickands, Electronic Communications in Probability, 15, 339-345. https://doi.org/10.1214/ECP.v15-1566
- Burnecki, K. and Michna, Z. (2002). Simulation of Pickands constants, Probability and Mathematical Statics, 22, 193-199.
- Craigmile, P. F. (2003). Simulating a class of stationary Gaussian processes using the Davies-Harte algorithm, with application to long memory processes, Journal of Time Series Analysis, 24, 505-511. https://doi.org/10.1111/1467-9892.00318
- Davies, R. B. and Harte, D. S. (1987). Tests for Hurst effect, Biometrika, 14, 95-101.
- Debicki, K. (2006). Some properties of generalized Pickands constants, Theory of Probability and Its Applications, 50, 290-298. https://doi.org/10.1137/S0040585X97981755
- Dieker, A. B. and Yakir, B. (2014). On asymptotic constants in the theory of extremes for Gaussian processes, Bernoulli, 20, 1600-1619. https://doi.org/10.3150/13-BEJ534
-
Harper, A. J. (2014). Pickands' constant H does not equal
$1={\Gamma}(1={\alpha})$ , for small$\alpha$ , Available from: http://arxiv.org/pdf/1404.5505v1.pdf -
Husler, J. (1999). Extremes of a Gaussian process and the constant
$H_{\alpha}$ , Extremes, 2, 59-70. - Leadbetter, M. R., Lindgren, G. and Rootzen, H. (1983). Extremes and Related Properties of Random Sequences and Processes, Springer, New York.
- Pickands, J. (1969). Asymptotic properties of the maximum in a stationary Gaussian process, Transactions of the American Mathematical Society, 145, 75-86.
- Qualls, C. and Watanabe, H. (1972). Asymptotic properties of Gaussian processes, Annals of Mathematical Statistics, 43, 580-596. https://doi.org/10.1214/aoms/1177692638
- Samoradnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes, Chapman & Hall, New York.
- Shao, Q. (1996). Bounds and estimators of a basic constant in extreme value theory of Gaussian processes, Statistica Sinica, 6, 245-257.
-
Wood, A. T. A. and Chan, G. (1994). Simulation of stationary Gaussian processes in
$[0,\;1]^d$ , Journal of Computational and Graphical Statistics, 3, 409-432.