DOI QR코드

DOI QR Code

Role of membranes in bioelectrochemical systems

  • Kokabian, Bahareh (Department of Civil and Environmental Engineering, Mississippi State University) ;
  • Gude, Veera Gnaneswar (Department of Civil and Environmental Engineering, Mississippi State University)
  • Received : 2014.01.11
  • Accepted : 2014.12.11
  • Published : 2015.01.25

Abstract

This paper provides an overview of the role of membranes in bioelectrochemical systems (BESs). Bioelectrochemical systems harvest clean energy from waste organic sources by employing indigenous exoelectrogenic bacteria. This energy is extracted in the form of bioelectricity or valuable biofuels such as ethanol, methane, hydrogen, and hydrogen peroxide. Various types of membranes were applied in these systems, the most common membrane being the cation exchange membrane. In this paper, we discuss three major bioelectrochemical technology research areas namely microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial desalination cells (MDCs). The operation principles of these BESs, role of membranes in these systems and various factors that affect their performance and economics are discussed in detail. Among the three technologies, the MFCs may be functional with or without membranes as separators while the MECs and MDCs require membrane separators. The preliminary economic analysis shows that the capital and operational costs for BESs will significantly decrease in the future due mainly to differences in membrane costs. Currently, MECs appear to be cost-competitive and energy-yielding technology followed by MFCs. Future research endeavors should focus on maximizing the process benefits while simultaneously minimizing the membrane costs related to fouling, maintenance and replacement.

Keywords

References

  1. Ahn, Y. and Logan, B.E. (2010), "Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures", Bioresource Technol., 101(2), 469-475. https://doi.org/10.1016/j.biortech.2009.07.039
  2. Barbose, G., Darghouth, N., Weaver, S. and Wiser, R. (2013), "Tracking the Sun VI: The Installed Price of Photovoltaics in the United States from 1998 to 2012", LBNL-6350E.
  3. Biffinger, J.C., Ray, R., Little, B. and Ringeisen, B.R. (2007), "Diversifying biological fuel cell designs by use of nanoporous filters", Environ. Sci. Technol., 41(4), 1444-1449. https://doi.org/10.1021/es061634u
  4. Call, D. and Logan, B.E. (2008), "Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane", Environ. Sci. Technol., 42(9), 3401-3406. https://doi.org/10.1021/es8001822
  5. Call, D.F., Wagner, R.C. and Logan, B.E. (2009), "Hydrogen production by Geobacter species and a mixed consortium in a microbial electrolysis cell", Appl. Environ. Microb., 75(24), 7579-7587. https://doi.org/10.1128/AEM.01760-09
  6. Cao, X., Huang, X., Liang, P., Xiao, K., Zhou, Y., Zhang, X. and Logan, B.E. (2009), "A new method for water desalination using microbial desalination cells", Environ. Sci. Technol., 43(18), 7148-7152. https://doi.org/10.1021/es901950j
  7. Chae, K., Choi, M., Ajayi, F., Park, W., Chang, I. and Kim, I. (2008), "Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells", Energ. Fuel., 22(1), 169-176. https://doi.org/10.1021/ef700308u
  8. Chen, X., Xia, X., Liang, P., Cao, X.X., Sun, H.T. and Huang, X. (2011), "Stacked microbial desalination cells to enhance water desalination efficiency", Environ. Sci. Technol., 45, 2465-2470. https://doi.org/10.1021/es103406m
  9. Cheng, S., Liu, H. and Logan, B.E. (2006), "Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells", Environ. Sci. Technol., 40(1), 364-369. https://doi.org/10.1021/es0512071
  10. Clauwaert, P. and Verstraete, W. (2009), "Methanogenesis in membraneless microbial electrolysis cells", Appl. Microbiol. Biotechnol., 82(5), 829-836. https://doi.org/10.1007/s00253-008-1796-4
  11. Du, Z., Li, H. and Gu, T. (2007), "A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy", Biotechnol. Adv., 25(5), 464-482. https://doi.org/10.1016/j.biotechadv.2007.05.004
  12. EIA 2009 (2009), $CO_{2}$ Emissions per Kilowatt Hour of Electricity Production (Retrieved on July 24, 2014). http://www.eia.doe.gov/cneaf/electricity/page/co2_report/co2report.html#electric2000
  13. Fan, Y.Y., Hu, H.H. and Liu, H.H. (2007), "Enhanced coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration", J. Power Sources, 171(2), 348-354. https://doi.org/10.1016/j.jpowsour.2007.06.220
  14. Fumatech (2013), Accessed online on December 28, 2013. http://www.fumatech.com/NR/rdonlyres/0FF1EDB0-DE8F-4601-AD33F7F1D37444/0/FuMaTech_fuma sepMembranes.pdf
  15. Geise, G., Hickner, M. and Logan, B. (2013), "Ionic resistance and permselectivity tradeoffs in anion exchange membranes", ACS Appl. Mater. Interfaces, 5(20), 10294-10301. https://doi.org/10.1021/am403207w
  16. Grzebyk, M. and Pozniak, G. (2005), "Microbial fuel cells (MFCs) with interpolymer cation exchange membranes", Sep. Purif. Technol., 41(3), 321-328. https://doi.org/10.1016/j.seppur.2004.04.009
  17. Gude, V.G. (2015), "Energy and water autarky of wastewater treatment and power generation systems", Renew. Sust. Energ. Rev. DOI: 10.1016/j.rser.2015.01.055
  18. Gude, V.G., Kokabian, B. and Gadhamshetty, V. (2013), "Beneficial bioelectrochemical systems for energy, water, and biomass production", J. Microb. Biochem. Technol., S6, 005.
  19. Hu, H., Fan, Y. and Liu, H. (2008), "Hydrogen production using single-chamber membrane-free microbial electrolysis cells", Water Res., 42(15), 4172-4178. https://doi.org/10.1016/j.watres.2008.06.015
  20. Huggins, T., Fallgren, P.H., Jin, S. and Ren, Z. (2013), "Energy and performance comparison of microbial fuel cell and conventional aeration treating of wastewater", J. Microb. Biochem. Technol., S6, 002.
  21. Jacobson, K.S., Drew, D.M. and He, Z. (2011a), "Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater", Environ. Sci. Technol., 45(10), 4652-4657. https://doi.org/10.1021/es200127p
  22. Jacobson, K.S., Drew, D.M. and He, Z. (2011b), "Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode", Bioresource Technol., 102(1), 376-380. https://doi.org/10.1016/j.biortech.2010.06.030
  23. Jikihara, A., Ohashi, R., Kakihana, Y., Higa, M. and Kobayashi, K. (2013), "Electrodialytic Transport Properties of Anion-Exchange Membranes Prepared from Poly(vinyl alcohol) and Poly(vinyl alcohol-comethacryloyl aminopropyl trimethyl ammonium chloride)", Membranes, 3(1), 1-15. https://doi.org/10.3390/membranes3010001
  24. Kiely, P.D., Rader, G., Regan, J.M. and Logan, B.E. (2011a), "Long-term cathode performance and the microbial communities that developin microbial fuel cells fed different fermentation endproducts", Bioresource Technol., 102(1), 361-366. https://doi.org/10.1016/j.biortech.2010.05.017
  25. Kiely, P.D., Cusick, R., Call, D.F., Selembo, P.A., Regan, J.M. and Logan, B.E. (2011b), "Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters", Bioresource Technol., 102(1), 388-394. https://doi.org/10.1016/j.biortech.2010.05.019
  26. Kim, Y. and Logan, B.E. (2011), "Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination", Environ. Sci. Technol., 45(13), 5840-5845. https://doi.org/10.1021/es200584q
  27. Kim, Y. and Logan, B.E. (2013), "Microbial desalination cells for energy production and desalination", Desalination, 308, 122-130. https://doi.org/10.1016/j.desal.2012.07.022
  28. Kim, J.R., Cheng, S., Oh, S.E. and Logan, B.E. (2007), "Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells", Environ. Sci. Technol., 41(3), 1004-1009. https://doi.org/10.1021/es062202m
  29. Kiran Kumar, A., Venkateswar Reddy, M., Chandrasekhar, K., Srikanth, S. and Venkata Mohan, S. (2012), "Endocrine disruptive estrogens role in electron transfer: Bio-electrochemical remediation with microbial mediated electrogenesis", Bioresource Technol., 104, 547-556. https://doi.org/10.1016/j.biortech.2011.10.037
  30. Kokabian, B. and Gude, V.G. (2013), "Photosynthetic microbial desalination cells (PMDCs) for clean energy, water and biomass production", Environ. Sci. Process. Impact., 15(12), 2178-2185. https://doi.org/10.1039/c3em00415e
  31. Kokabian, B. and Gude, V.G. (2015), "Sustainable photosynthetic biocathode in microbial desalination cells", Chem. Eng. J., 262, 958-965. https://doi.org/10.1016/j.cej.2014.10.048
  32. Lawrence Berkeley National Laboratory (2013), Accessed online on December 30, 2013. http://newscenter.lbl.gov/news-releases/2013/08/12/installed-price-of-solar-photovoltaic-systems-in-the-u -s-continues-to-decline-at-a-rapid-pace/
  33. Leong, J., Daud, W., Ghasemi, M., Liew, K. and Ismail, M. (2013), "Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: A comprehensive review", Renew. Sust. Energ. Rev., 28, 575-587. https://doi.org/10.1016/j.rser.2013.08.052
  34. Li, W.W., Sheng, G.P., Liu, X.W. and Yu, H.Q. (2011), "Recent advances in the separators for microbial fuel cells", Bioresource Technol., 102(1), 244-252. https://doi.org/10.1016/j.biortech.2010.03.090
  35. Liu, H. and Logan, B.E. (2004), "Electricity generation using an air-cathode single chamber microbial fuel cell in the presenceand absence of a proton exchange membrane", Environ. Sci. Technol., 38(14), 4040-4046. https://doi.org/10.1021/es0499344
  36. Logan, B.E. (2008), Microbial Fuel Cells, Wiley Publishers, Hoboken, NJ, USA.
  37. Logan, B.E. (2009), "Exoelectrogenic bacteria that power microbial fuel cells", Nat. Rev. Microbiol., 7, 375-381. https://doi.org/10.1038/nrmicro2113
  38. Logan, B.E., Hamelers, H.V.M., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. and Rabaey, K. (2006), "Microbial fuel cells: Methodology and technology", Environ. Sci. Technol., 40(17), 5181-5192. https://doi.org/10.1021/es0605016
  39. Logan, B.E., Call, D., Cheng, S., Hamelers, H.V., Sleutels, T.H., Jeremiasse, A.W. and Rozendal, R.A. (2008), "Microbial electrolysis cells for high yield hydrogen gas production from organic matter", Environ. Sci. Technol., 42(23), 8630-8640. https://doi.org/10.1021/es801553z
  40. Luo, H., Ren, Z. and Jenkins, P. (2011), "Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells", Environ. Sci. Technol., 45(1), 340-344. https://doi.org/10.1021/es1022202
  41. Luo, H., Xu, P., Roane, T.M., Jenkins, P.E. and Ren, Z. (2012a), "Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination", Bioresour. Technol., 105, 60-66. https://doi.org/10.1016/j.biortech.2011.11.098
  42. Luo, H., Xu, P., Jenkins, P.E. and Ren, Z. (2012b), "Ionic composition and transport mechanisms in microbial desalination cells", J. Membr. Sci., 409-410, 16-23. https://doi.org/10.1016/j.memsci.2012.02.059
  43. Luo, H., Ren, Z. and Xu, P. (2012c), "Long-term performance and characterization of microbial desalination cells in treating domestic wastewater", Bioresource Technol., 120, 187-193. https://doi.org/10.1016/j.biortech.2012.06.054
  44. McCarty, P.L. and Rittmann, B.E. (2001), Environmental Biotechnology: Principles and Applications, McGraw-Hill, New York, NY, USA.
  45. McCarty, P.L., Bae, J. and Kim, J. (2011), "Domestic wastewater treatment as a net energy producer - Can this be achieved?", Environ. Sci. Technol., 45, 7100-7106. https://doi.org/10.1021/es2014264
  46. Mehanna, M., Saito, T., Yan, J., Hickner, M., Cao, X., Huang, X. and Logan, B.E. (2010a), "Using microbial desalination cells to reduce water salinity prior to reverse osmosis", Energy Environ. Sci., 3(), 1114-1120. https://doi.org/10.1039/c002307h
  47. Mehanna, M., Kiely, P.D., Call, D.F. and Logan, B.E. (2010b), "Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production", Environ. Sci. Technol., 44, 9578-9583. https://doi.org/10.1021/es1025646
  48. Morel, A., Zuo, K., Xia, X., Wei, J., Luo, X., Liang, P. and Huang, X. (2012), "Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate", Bioresource Technol., 118, 43-48. https://doi.org/10.1016/j.biortech.2012.04.093
  49. Nevin, K.P., Richter, H., Covalla, S.F., Johnson, J.P., Woodard, T.L., Orloff, A.L., Jia, H., Zhang, M. and Lovley, D.R. (2008), "Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells", Environ. Microbial., 10(10), 2505-2514. https://doi.org/10.1111/j.1462-2920.2008.01675.x
  50. Oh, S.E. and Logan, B.E. (2006), "Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells", Appl. Microbiol. Biotechnol., 70(2), 162-169. https://doi.org/10.1007/s00253-005-0066-y
  51. Ping, Q., He, Z., Cohen, B. and Dosoretz, C. (2013), "Long-term investigation of fouling of cation and anion exchange membranes in microbial desalination cells", Desalination, 325, 48-55. https://doi.org/10.1016/j.desal.2013.06.025
  52. Qu, Y., Feng, Y., Wang, X., Liu, J., He, W. and Logan, B.E. (2012), "Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control", Bioresour. Technol, 106, 89-94. https://doi.org/10.1016/j.biortech.2011.11.045
  53. Ringeisen, B.R., Henderson, E., Wu, P.K., Pietron, J., Ray, R., Little, B., Biffinger, J.C. and Jones-Meehan, J.M. (2006), "High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10", Environ. Sci. Technol.,40(8), 2629-2634. https://doi.org/10.1021/es052254w
  54. Rosenbaum, M., He, Z. and Angenent, L.T. (2010), "Light energy to bioelectricity: photosynthetic microbial fuel cells", Curr. Opin. Chem. Biol., 21(3), 259-264.
  55. Rozendal. R.A., Hamelers, H.V.M. and Buisman, C.J.N. (2006), "Effects of membrane cation transport on pH and microbial fuel cell performance" , Environ. Sci. Technol., 40(17), 5206-5211 https://doi.org/10.1021/es060387r
  56. Rozendal, R.A., Hamelers, H.V.M., Rabaey, K., Keller, J. and Buisman, C.J.N. (2008), "Towards practical implementation of bioelectrochemical wastewater treatment", Trends Biotechnol., 26(8), 450-459. https://doi.org/10.1016/j.tibtech.2008.04.008
  57. Sleutels, T.H., Hamelers, H.V., Rozendal, R.A. and Buisman, C.J. (2009), "Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes", Int. J. Hydrogen Energy, 34(9), 3612-3620. https://doi.org/10.1016/j.ijhydene.2009.03.004
  58. Sustarsic, M. (2009), "Wastewater treatment: Understanding the activated sludge process", CEP, 26-29.
  59. U.S. EPA (2012), State and Local Climate and Energy Program: Water/Wastewater, Accessed: on January 01, 2014, Available at: http://www.epa.gov/statelocalclimate/local/topics/water.html
  60. Visvanathan, C. and Abeynayaka, A. (2012), "Developments and future potentials of anaerobic membrane bioreactors (AnMBRs)", Membr. Water Treat., Int. J., 3(1), 1-23. https://doi.org/10.12989/mwt.2012.3.1.001
  61. Wang, X., Feng, Y., Liu, J., Lee, H., Li, C., Li, N. and Ren, N. (2010), "Sequestration of $CO_{2}$ discharged from anode by algal cathode in microbial carbon capture cells (MCCs)", Biosens and Bioelectron., 25(12), 2639-2643. https://doi.org/10.1016/j.bios.2010.04.036
  62. Yang, S., Jia, B. and Liu, H. (2009), "Effects of the Pt loading side and cathode biofilm onthe performance of a membrane-less and single-chamber microbial fuel cell", Bioresour. Technol., 100, 1197-1202. https://doi.org/10.1016/j.biortech.2008.08.005
  63. Yaroslavtsev, A.B. and Nikonenko, V.V. (2009), "Ion-exchange membrane materials: Properties, modification, and practical application", Nanotechnol. Russia, 4(3-4), 137-159. https://doi.org/10.1134/S199507800903001X
  64. Yee, R.S.L., Rozendal, R.A., Zhang, K. and Ladewig, B.P. (2012), "Cost effective cationexchange membranes: A review", Chem. Eng. Res. Des., 90(7), 950-959. https://doi.org/10.1016/j.cherd.2011.10.015
  65. Yu, E.H., Cheng, S., Scott, K. and Logan, B.E. (2007), "Microbial fuel cell performance with non-Pt cathode catalysts", J. Power Sources, 171(2), 275-281. https://doi.org/10.1016/j.jpowsour.2007.07.010
  66. Zhang, B. and He, Z. (2012), "Integrated salinity reduction and water recovery in an osmotic microbial desalination cell", RSC Adv., 2(8), 3265-3269. https://doi.org/10.1039/c2ra20193c
  67. Zhang, L., Liu, C., Zhuang, L., Li, W., Zhou, S. and Zhang, J. (2009), "Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells", Biosens. Bioelectron, 24(9), 2825-2829. https://doi.org/10.1016/j.bios.2009.02.010
  68. Zhang, F.F., Chen, M.M., Zhang, Y.Y. and Zeng, R.J. (2012), "Microbial desalination cells with ion exchange resin packed to enhance desalination at low salt concentration", J. Membr. Sci., 417-418, 28-33. https://doi.org/10.1016/j.memsci.2012.06.009
  69. Zhao, F., Harnisch, F., Schroder, U., Scholz, F., Bogdanoff, P. and Herrmann, I. (2005), "Application of pyrolysed iron (II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells", Electrochem. Commun., 7(12), 1405-1410. https://doi.org/10.1016/j.elecom.2005.09.032
  70. Zhuang, L., Zhou, S., Wang, Y., Liu, C. and Geng, S. (2009), "Membrane-less cloth cathode assembly (CCA) for scalable microbial fuel cells", Biosens. Bioelectron., 24(12), 3652-3656 https://doi.org/10.1016/j.bios.2009.05.032
  71. Zuo, Y., Cheng, S., Call, D. and Logan, B.E. (2007), "Tubular membrane cathodes for scalable power generation in microbial fuel cells", Environ. Sci. Technol., 41(9), 3347-3353. https://doi.org/10.1021/es0627601
  72. Zuo, Y., Cheng, S. and Logan, B.E. (2008), "Ion exchange membrane cathodes for scalable microbial fuel cells", Environ. Sci. Technol., 42(18), 6967-6972. https://doi.org/10.1021/es801055r
  73. Zuo, K.K., Yuan, L.L., Wei, J.J., Liang, P.P. and Huang, X.X. (2013), "Competitive migration behaviors of multiple ions and their impacts on ion-exchange resin packed microbial desalination cell", Bioresource Technol., 146, 637-642. https://doi.org/10.1016/j.biortech.2013.07.139

Cited by

  1. Energy and water autarky of wastewater treatment and power generation systems vol.45, 2015, https://doi.org/10.1016/j.rser.2015.01.055
  2. Wastewater treatment in microbial fuel cells – an overview vol.122, 2016, https://doi.org/10.1016/j.jclepro.2016.02.022
  3. Factors influencing silver recovery and power generation in bio-electrochemical reactors vol.24, pp.26, 2017, https://doi.org/10.1007/s11356-017-9722-x
  4. Bio-electrochemical reactors using AMI-7001S and CMI-7000S membranes as separators for silver recovery and power generation vol.244, 2017, https://doi.org/10.1016/j.biortech.2017.08.086
  5. Quantitative assessment of energy and resource recovery in wastewater treatment plants based on plant-wide simulations vol.118, 2017, https://doi.org/10.1016/j.watres.2017.04.001
  6. Bioelectricity production in photosynthetic microbial desalination cells under different flow configurations vol.58, 2018, https://doi.org/10.1016/j.jiec.2017.09.017
  7. Desalination with renewable energy production in microalgae - Microbial desalination process 2018, https://doi.org/10.1016/j.renene.2018.01.061
  8. A critical review of bioelectrochemical membrane reactor (BECMR) as cutting-edge sustainable wastewater treatment vol.33, pp.2, 2015, https://doi.org/10.1515/revce-2016-0012
  9. A critical review of bioelectrochemical membrane reactor (BECMR) as cutting-edge sustainable wastewater treatment vol.33, pp.2, 2015, https://doi.org/10.1515/revce-2016-0012
  10. Progress Towards Bioelectrochemical Remediation of Hexavalent Chromium vol.11, pp.11, 2019, https://doi.org/10.3390/w11112336
  11. Spontaneous reduction of low-potential silver(I) dithiosulfate complex in bioelectrochemical systems for recovery of silver and simultaneous electricity production vol.41, pp.23, 2015, https://doi.org/10.1080/09593330.2019.1597171
  12. Microbial Electrolysis Cells for Decentralised Wastewater Treatment: The Next Steps vol.13, pp.4, 2015, https://doi.org/10.3390/w13040445
  13. Salinity reduction of brackish water using a chemical photosynthesis desalination cell vol.779, pp.None, 2015, https://doi.org/10.1016/j.scitotenv.2021.146473
  14. Bioelectrochemical technology for recovery of silver from contaminated aqueous solution: a review vol.28, pp.45, 2021, https://doi.org/10.1007/s11356-020-10065-y
  15. Electrochemical water softening as pretreatment for nitrate electro bioremediation vol.806, pp.p1, 2015, https://doi.org/10.1016/j.scitotenv.2021.150433