DOI QR코드

DOI QR Code

Solid-salt pressure-retarded osmosis with exothermic dissolution energy for sustainable electricity production

  • Choi, Wook (Greenhouse Gas Research Center, Korea Institute of Energy Research (KIER)) ;
  • Bae, Harim (Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER)) ;
  • Ingole, Pravin G. (Greenhouse Gas Research Center, Korea Institute of Energy Research (KIER)) ;
  • Lee, Hyung Keun (Greenhouse Gas Research Center, Korea Institute of Energy Research (KIER)) ;
  • Kwak, Sung Jo (Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER)) ;
  • Jeong, Nam Jo (Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER)) ;
  • Park, Soon-Chul (Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER)) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Jonghwi (Department of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Park, Chul Ho (Jeju Global Research Center (JGRC), Korea Institute of Energy Research (KIER))
  • 투고 : 2014.10.01
  • 심사 : 2014.12.30
  • 발행 : 2015.03.25

초록

Salinity gradient power (SGP) systems have strong potential to generate sustainable clean electricity for 24 hours. Here, we introduce a solid-salt pressure-retarded osmosis (PRO) system using crystal salt powders rather than seawater. Solid salts have advantages such as a small storage volume, controllable solubility, high Gibbs dissolution energy, and a single type of water intake, low pretreatment costs. The power densities with 3 M draw solutions were $11W/m^2$ with exothermic energy and $8.9W/m^2$ without at 35 bar using a HTI FO membrane (water permeability $A=0.375L\;m^{-2}h^{-1}bar^{-1}$). These empirical power densities are ~13% of the theoretical value.

키워드

과제정보

연구 과제 주관 기관 : Korea Institute of Energy Research (KIER)

참고문헌

  1. Achilli, A., Cath, T.Y. and Childress, A.E. (2009), "Power generation with pressure retarded osmosis: An experimental and theoretical investigation", J. Membr. Sci., 343(1-2), 42-52. https://doi.org/10.1016/j.memsci.2009.07.006
  2. Cath, T.Y., Childress, A.E. and Elimelech, M. (2006), "Forward osmosis: Principles, applications, and recent developments", J. Membr. Sci., 281(1-2), 70-87. https://doi.org/10.1016/j.memsci.2006.05.048
  3. Cath, T.Y., Elimelech, M., McCutcheon, J.R., McGinnis, R.L., Achilli, A., Anastasio, D., Brady, A.R., Childress, A.E., Farr, I.V., Hancock, N.T., Lampi, J., Nghiem, L.D., Xie, M. and Yip, N.Y. (2013), "Standard methodology for evaluating membrane performance in osmotically driven membrane processes", Desalination, 312, 31-38. https://doi.org/10.1016/j.desal.2012.07.005
  4. Chou, S., Wang, R., Shi, L., She, Q., Tang, C. and Fane, A.G. (2012), "Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density", J. Membr. Sci., 389, 25-33. https://doi.org/10.1016/j.memsci.2011.10.002
  5. Cipollina, A., Di Sparti, M.G., Tamburini, A. and Micale, G. (2012), "Development of a membrane distillation module for solar energy seawater desalination", Chem. Eng. Res. Des., 90(12), 2101-2121. https://doi.org/10.1016/j.cherd.2012.05.021
  6. Dai, A. and Treberth, K.E. (2002), "Estimates of freshwater dicharge from continents: Lattudial and seasonal variations", J. Hydrometeorol., 3(6), 660-687. https://doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2
  7. Feinberg, B.J., Ramon, G.Z. and Hoek, E.M.V. (2013), "Thermodynamic analysis of osmotic energy ecovery at a reverse osmosis desalination plant", Environ. Sci. Technol., 47(6), 2982-2989. https://doi.org/10.1021/es304224b
  8. Han, G., Wang, P. and Chung, T.-S. (2013), "Highly robust thin-film composite pressure retarded osmosis (PRO) hollow fiber membranes with high power densities for renewable salinity-gradient energy generation", Environ. Sci. Technol., 47(14), 8070-8077. https://doi.org/10.1021/es4013917
  9. Helfer, F., Lemckert, C. and Anissimov, Y.G. (2014), "Osmotic power with pressure retarded osmosis: Theory, performance and trends - A review", J. Membr. Sci., 453, 337-358. https://doi.org/10.1016/j.memsci.2013.10.053
  10. Ingole, P.G., Choi, W., Kim, K.H., Park, C.H., Choi, W.K. and Lee, H.K. (2014), "Synthesis, characterization and surface modification of PES hollow fiber membrane support with polydopamine and thin film composite for energy generation", Chem. Eng. J., 243, 137-146. https://doi.org/10.1016/j.cej.2013.12.094
  11. La Mantia, F., Pasta, M., Deshazer, H.D., Logan, B.E. and Cui, Y. (2011), "Batteries for efficient energy extraction from a water salinity difference", Nano Lett., 11(4), 1810-1813. https://doi.org/10.1021/nl200500s
  12. Lee, K.P., Arnot, T.C. and Mattia, D. (2011), "A review of reverse osmosis membrane materials for desalination - Dvelopment to date and future potential", J. Membr. Sci., 370(1-2), 1-22. https://doi.org/10.1016/j.memsci.2010.12.036
  13. Loeb, S. (1975), "Method and apparatus for generating power utilizing pressure-retarded-osmosis", Google Patents.
  14. Logan, B.E. and Elimelech, M. (2012), "Membrane-based processes for sustainable power generation using water", Nature, 488(7411), 313-319. https://doi.org/10.1038/nature11477
  15. McGinnis, R.L. and Elimelech, M. (2008), "Global challenges in energy and water supply: The promise of engineered osmosis", Environ. Sci. Technol., 42(23), 8625-8629. https://doi.org/10.1021/es800812m
  16. McGinnis, R.L., McCutcheon, J.R. and Elimelech, M. (2007), "A novel ammonia-carbon dioxide osmotic heat engine for power generation", J. Membr. Sci., 305(1-2), 13-19. https://doi.org/10.1016/j.memsci.2007.08.027
  17. Mi, B. and Elimelech, M. (2008), "Chemical and physical aspects of organic fouling of forward osmosis membranes", J. Membr. Sci., 320(1-2), 292-302. https://doi.org/10.1016/j.memsci.2008.04.036
  18. Paper, W. (2011), "Seawater desalination power consumption", Water Reuse Association, 11(1-16).
  19. Pattle, R. (1954), "Production of electric power by mixing fresh and salt water in the hydroelectric pile", Nature, 174, 660 p. https://doi.org/10.1038/174660a0
  20. Radhakrishnan, S. and Saini, D.R. (1993), "Polymer-induced crystallization of inorganic salts II. PEO-$CaCl_2$, PEO-$K_2CO_3$ and PEO-$CaCO_3$", J. Crystal Growth, 129(1-2), 191-201. https://doi.org/10.1016/0022-0248(93)90448-6
  21. Raluy, G., Serra, L. and Uche, J. (2006), "Life cycle assessment of MSF, MED and RO desalination technologies", Energy, 31(13), 2361-2372. https://doi.org/10.1016/j.energy.2006.02.005
  22. She, Q., Wong, Y.K.W., Zhao, S. and Tang, C.Y. (2013), "Organic fouling in pressure retarded osmosis: Experiments, mechanisms and implications", J. Membr. Sci., 428, 181-189. https://doi.org/10.1016/j.memsci.2012.10.045
  23. Straub, A.P., Yip, N.Y. and Elimelech, M. (2013), "Raising the bar: Increased hydraulic pressure allows unprecedented high power densities in pressure-retarded osmosis", Environ. Sci. Technol. Lett., 1(1), 55-59. https://doi.org/10.1021/ez400117d
  24. Sun, S.-P. and Chung, T.-S. (2013), "Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation", Environ. Sci. Technol., 47(22), 13167-13174. https://doi.org/10.1021/es403270n
  25. Tanioka, A., Saito, K., Irie, M., Zaitsu, S., Sakai, H. and Hayashi, H. (2012), "Power generation by pressure retarded osmosis using concentrated brine from seawater desalination system and treated sewage: Review of experience with pilot plant in Japan", The 3rd Osmosis Membrane Summit, 4, 1-33.
  26. Tun, C.M., Fane, A.G., Matheickal, J.T. and Sheikholeslami, R. (2005), "Membrane distillation crystallization of concentrated salts-flux and crystal formation", J. Membr. Sci., 257(1-2), 144-155. https://doi.org/10.1016/j.memsci.2004.09.051
  27. Vacancies, P.S. (2012), "Energy balances of non-OECD countries", Int. Energy Agency, 1-452.
  28. Voutchkov, N. (2006), "Innovative method to evaluate tolerance of marine organism", Desalin. Water Reuse, 16(2), 29-34.
  29. Yip, N.Y. and Elimelech, M. (2011), "Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis", Environ. Sci. Technol., 45(23), 10273-10282. https://doi.org/10.1021/es203197e
  30. Yip, N.Y. and Elimelech, M. (2012), "Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis", Environ. Sci. Technol., 46(9), 5230-5239. https://doi.org/10.1021/es300060m
  31. Yip, N.Y., Tiraferri, A., Phillip, W.A., Schiffman, J.D., Hoover, L.A., Kim, Y.C. and Elimelech, M. (2011), "Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients", Environ. Sci. Technol., 45(10), 4360-4369. https://doi.org/10.1021/es104325z
  32. Yun, Y., Ma, R., Zhang, W., Fane, A.G. and Li, J. (2006), "Direct contact membrane distillation mechanism for high concentration NaCl solutions", Desalination, 188(1-3), 251-262. https://doi.org/10.1016/j.desal.2005.04.123

피인용 문헌

  1. Preparation of activated carbon incorporated polysulfone membranes for dye separation vol.7, pp.6, 2016, https://doi.org/10.12989/mwt.2016.7.6.477
  2. Utilization of the Donnan potential induced by reverse salt flux in pressure retarded osmosis systems vol.18, pp.34, 2016, https://doi.org/10.1039/C6CP03939A
  3. Thin film composite membrane prepared by interfacial polymerization as an ion exchange membrane for salinity gradient power 2017, https://doi.org/10.1016/j.jiec.2017.10.044