DOI QR코드

DOI QR Code

Allelopathic Potential of Select Gymnospermous Trees

  • da Silva, Jaime A. Teixeira (P. O. Box 7, Miki Cho Post Office) ;
  • Karimi, Javad (Department of Biology, College of Sciences, Shiraz University) ;
  • Mohsenzadeh, Sasan (Department of Biology, College of Sciences, Shiraz University) ;
  • Dobranszki, Judit (Research Institute of Nyiregyhaza, University of Debrecen)
  • Received : 2013.04.16
  • Accepted : 2015.03.18
  • Published : 2015.05.31

Abstract

Allelopathy is an ecological phenomenon that refers to the beneficial or harmful effects of one plant on another plant, both crop and weed species, by the release of organic chemicals (allelochemicals) from plant parts by leaching, root exudation, volatilization, residue decomposition in soil and other processes in both natural and agricultural systems. Allelopathy can affect many aspects of plant ecology including occurrence, growth, plant succession, the structure of plant communities, survival, dominance, diversity, and plant productivity. In this review, we describe the concept of allelopathy, some mechanisms of operation within plants and then focus on a select number of gymnospermous tree genera: Ephedra, Pinus, Taxus, Cedrus, Juniperus, Picea, Cunninghamia and Araucaria. Pinus, Taxus (yew) and Cedrus (cedar) trees have a strong negative allelopathic effect on the germination, growth, or development of other plant species in the forest community.

Keywords

References

  1. Abourashed EA, El-Alfy AT, Khan IA, Walker L. 2003. Ephedra in perspective: a current review. Phytotherapy Research 17: 703-712. https://doi.org/10.1002/ptr.1337
  2. Aliloo AA, Shahabivand S, Farjam L, Heravi S. 2012. Allelopathic effects of pine needle extracts on germination and seedling growth of ryegrass and Kentucky bluegrass. Advances in Environmental Biology 6: 2513-2518.
  3. Alipoor M, Mohsenzadeh S, Teixeira da Silva JA, Niakousari M. 2012. Allelopathic potential of Aloe vera. Medicinal and Aromatic Plant Science and Biotechnology 6: 78-80.
  4. Amri I, Hanana M, Jamoussi B, Hamrouni L. 2014. Essential oils of Pinus nigra J.F. Arnold subsp. laricio Maire: Chemical composition and study of their herbicidal potential. Arabian Journal of Chemistry in press doi: 10.1016/j.arabjc.2014.05.026.
  5. Areco VA, Figueroa S, Cosa MT, Dambolena JS, Zygadlo JA, Zunino MP. 2014. Effect of pinene isomers on germination and growth of maize. Biochemical Systematics and Ecology 55: 27-33. https://doi.org/10.1016/j.bse.2014.02.013
  6. Baroniya SS, Baroniya MB. 2014. Germination and early seedling growth of mustard and wheat as affected by allelopathic activity of Pinus needle extracts. International Research Journal of Environment Sciences 3: 27-34.
  7. Blanco JA. 2007. The representation of allelopathy in ecosystem- level forest models. Ecological Modelling 209: 65-77. https://doi.org/10.1016/j.ecolmodel.2007.06.014
  8. Bogatek R, Gniazdowska A, Zakrzewska W, Oracz K, Gawronski SW. 2006. Allelopathic effects of sunflower extracts on mustard seed germination and seedling growth. Biologia Plantarum 50: 156-158. https://doi.org/10.1007/s10535-005-0094-6
  9. Braine JW, Curcio GR, Wachowicz CM, Hansel FA. 2012. Allelopathic effects of Araucaria angustifolia needle extracts in the growth of Lactuca sativa seeds. Journal of Forest Research 17: 440-445. https://doi.org/10.1007/s10310-011-0314-1
  10. Chen LC, Wang SL. 2013. Allelopathic behaviour of Chinese fir from plantations of different ages. Forestry 86: 225-230. https://doi.org/10.1093/forestry/cps078
  11. Chen LC, Wang SL, Wang P, Kong CH. 2014. Autoinhibition and soil allelochemical (cyclic dipeptide) levels in replanted Chinese fir (Cunninghamia lanceolata) plantations. Plant and Soil 374: 793-801. https://doi.org/10.1007/s11104-013-1914-7
  12. Cimmino A, Andolfi A, Evidente A. 2014. Phytotoxic terpenes produced by phytopathogenic fungi and allelopathic plants. Natural Product Communications 9: 401-408.
  13. Colombo ML. 2014. Some observations on the toxicology of natural products. Journal of Pharmacovigilancee S1: e001.
  14. Crohn DM, Bishop ML. 1999. Proximate carbon analysis for compost production and mulch use. Transactions of the ASABE 42: 791-798. https://doi.org/10.13031/2013.13243
  15. Cui JF, Zhou TH, Zhang JS, Lou ZC. 1991. Analysis of alkaloids in Chinese Ephedra species by gas chromatographic methods. Phytochemical Analysis 2: 116-119. https://doi.org/10.1002/pca.2800020305
  16. Cusido RM, Onrubia M, Sabater-Jara AB, Moyano E, Bonfill M, Goossens A, Angeles Pedreno M, Palazon J. 2014. A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp. Biotechnology Advances 32: 1157-1167. https://doi.org/10.1016/j.biotechadv.2014.03.002
  17. de Albuquerque MB, dos Santos RC, Lima LM, Melo Filho PA, Nogueira RJMC, da Camara CAG, Ramos AR. 2011. Allelopathy, an alternative tool to improve cropping systems. a review. Agronomy for Sustainable Development 31: 379-395. https://doi.org/10.1051/agro/2010031
  18. Fernandez C, Santonja M, Gros R, Monnier Y, Chomel M, Baldy V, Bousquet-Melou A. 2013. Allelochemicals of Pinus halepensis as drivers of biodiversity in Mediterranean open mosaic habitats during the colonization stage of secondary succession. Journal of Chemical Ecology 39: 298-311. https://doi.org/10.1007/s10886-013-0239-6
  19. Fernandez C, Voiriot S, Mevy JP, Vila B, Ormeno E, Dupouyet S, Bousquet-Melou A. 2008. Regeneration failure of Pinus halepensis Mill.: The role of autotoxicity and some abiotic environmental parameters. Forest Ecology and Management 255: 2928-2936. https://doi.org/10.1016/j.foreco.2008.01.072
  20. Gallet C. 1994. Allelopathic potential in bilberry-spruce forests: Influence of phenolic compounds on spruce seedlings. Journal of Chemical Ecology 20: 1009-1024. https://doi.org/10.1007/BF02059738
  21. Grover JP, Wang FB. 2014. Competition and allelopathy with resource storage: two resources. Journal of Theoretical Biology 351: 9-24. https://doi.org/10.1016/j.jtbi.2014.02.013
  22. Hadacek F, Bachmann G, Engelmeier D, Chobot V. 2011. Hormesis and a chemical raison d'etre for secondary plant metabolites. Dose Response 9: 79-116. https://doi.org/10.2203/dose-response.09-028.Hadacek
  23. Hai P, Wen SZ, Li Y, Gao Y, Jiang XJ, Wang F. 2014. New Taxane Diterpenoids from Taxus yunnanensis. Natural Products and Bioprospecting 4: 47-51.
  24. Haig T. 2008. Allelochemicals in plants. In: Allelopathy in sustainable agriculture and forestry (Zeng RS, Mallik AU, Luo SM, eds). Springer Science, Business Media, Berlin, Germany, pp 63-104.
  25. Hamrouni L, Hanana M, Amri I, Romane AE, Gargouri S, Jamoussi B. 2015. Allelopathic effects of essential oils of Pinus halepensis Miller: chemical composition and study of their antifungal and herbicidal activities. Archives of Phytopathology and Plant Protection 48: 145-158. https://doi.org/10.1080/03235408.2014.884667
  26. Hao DC, Xiao PG, Peng Y, Liu M, Huo L. 2012. Research progress and trend analysis of biology and chemistry of Taxus medicinal resources. Yao Xue Xue Bao 47: 827-835. (In Chinese)
  27. Inderjit, Wardle DA, Karban R, Callaway RM. 2011. The ecosystem and evolutionary contexts of allelopathy. Trends in Ecology and Evolution 26: 655-662. https://doi.org/10.1016/j.tree.2011.08.003
  28. Ismail A, Lamia H, Hanana M, Gargouri S, Fezzani T, Jamoussi B. 2013. Chemical composition, physico-chemical properties, antifungal and herbicidal activities of Pinus halepensis Miller essential oils. Biological Agriculture and Horticulture 29: 91-106. https://doi.org/10.1080/01448765.2013.764486
  29. Ismail A, Lamia H, Hanana M, Jamoussi B. 2011. Chemical composition of Juniperus oxycedrus l. subsp macrocarpa essential oil and study of their herbicidal effects on germination and seedling growth of weeds. Asian Journal of Applied Sciences 4: 771-779. https://doi.org/10.3923/ajaps.2011.771.779
  30. Jeddi K, Cortina J, Chaieb M. 2009. Acacia salicina, Pinus halepensis and Eucalyptus occidentalis improve soil surface conditions in arid southern Tunisia. Journal of Arid Environments 73: 1005-1013. https://doi.org/10.1016/j.jaridenv.2009.05.005
  31. Kato-Noguchi H, Fushimi Y, Shigemori H. 2009. An allelopathic substance in red pine needles (Pinus densiflora). Journal of Plant Physiology 166: 442-446. https://doi.org/10.1016/j.jplph.2008.06.012
  32. Kato-Noguchi H, Fushimi Y, Tanaka Y, Teruya T, Suenaga K. 2011. Allelopathy of red pine: isolation and identification of an allelopathic substance in red pine needles. Plant Growth Regulation 65: 299-304. https://doi.org/10.1007/s10725-011-9601-2
  33. Kew Royal Botanical Gardens. 2014. Kew World Checklist of Selected Plant Families. http://apps.kew.org/wcsp/incfamilies.do
  34. Klaus W. 1989. Mediterranean pines and their history. Plant Systematics and Evolution 162: 133-163. https://doi.org/10.1007/BF00936915
  35. Krueger KW. 1963. Compounds leached from western red cedar shingle tow found toxic to Douglas fir seedlings. Pacific Northwest Forest and Range Experimental Station Publication, pp 7-12.
  36. Lee IK, Monsi M (1963) Ecological studies on Pinus densiflora forest. I. Effects of plant substances on the floristic composition of the undergrowth. Botanical Magazine (Tokyo) 76: 400-413. https://doi.org/10.15281/jplantres1887.76.400
  37. Lei TT. 2000. Allelochemistry as a plant stress. In: The physiology of plants under stress (Orcutt DM, Nilsen ET, eds). Wiley, New York, pp 329-385.
  38. Li ZH, Wang Q, Liao JJ, Ruan X, Pan CD, Jiang DA, Luo CC. 2009. Elementary identification of potential autotoxins from picea schrenkiana litters. Chinese Journal of Analytical Chemistry 37: 888-892.
  39. Li ZH, Wang Q, Ruan X, Pan CD, Jiang DA. 2010. Phenolics and plant allelopathy. Molecules 15: 8933-8952. https://doi.org/10.3390/molecules15128933
  40. Lin YT, Tang SL, Pai CW, Whitman WB, Coleman DC, Chiu CY. 2014. Changes in the soil bacterial communities in a cedar plantation invaded by moso bamboo. Microbial Ecology 67: 421-429. https://doi.org/10.1007/s00248-013-0291-3
  41. Ma G, Bavadekar SA, Davis YM, Lalchandani SG, Nagmani R, Schaneberg BT, Khan IA, Feller DR. 2007. Pharmacological effects of ephedrine alkaloids on human ${\alpha}1$- and ${\alpha}2$-adrenergic receptor subtypes. Journal of Pharmacology and Experimental Therapeutics 322: 214-221. https://doi.org/10.1124/jpet.107.120709
  42. Malabadi RB, Teixeira da Silva JA, Mulgund GS (2011) Induction of somatic embryogenesis in Pinus caribaea. In: Rao MNV, Soneji J (Eds) Focus on Tree Micropropagation. Tree and Forestry Science and Biotechnology 5(Special Issue 1): 27-32.
  43. Mkandawire M, Teixeira da Silva JA, Dudel EG. 2014. The Lemna bioassay: contemporary issues as the most standardized plant bioassay for aquatic ecotoxicology. Critical Reviews in Environmental Science and Technology 44: 154-197. https://doi.org/10.1080/10643389.2012.710451
  44. Mohsenzadeh S, Gholami M, Teixeira da Silva JA. 2011. Allelopathic potential of Ephedra. Medicinal and Aromatic Plant Science and Biotechnology 5: 160-162.
  45. Mohsenzadeh S, Tayyebi NS, Teixeira da Silva JA. 2012. Allelopathic potential of Tecomella undulata. Medicinal and Aromatic Plant Science and Biotechnology 6: 75-77.
  46. Mohsenzadeh S, Zaboli J, Teixeira da Silva JA. 2012. Allelopathic potential of ajwain (Trachyspermum copticum). Medicinal and Aromatic Plant Science and Biotechnology 6: 72-74.
  47. Molyneux RJ, Lee ST, Gardner DR, Panter KE, James LF. 2007. Phytochemicals: the good, the bad and the ugly? Phytochemistry 68: 2973-2985. https://doi.org/10.1016/j.phytochem.2007.09.004
  48. Monnier Y, Vila B, Montes N, Bousquet-Melou A, Prevosto B, Fernandez C. 2011. Fertilization and allelopathy modify Pinus halepensis saplings crown acclimation to shade. Trees 25: 497-507. https://doi.org/10.1007/s00468-010-0525-7
  49. Muscolo A, Panuccio MR, Mallamaci C, Sidari M. 2014. Biological indicators to assess short-term soil quality changes in forest ecosystems. Ecological Indicators 45: 416-423. https://doi.org/10.1016/j.ecolind.2014.04.047
  50. Muscolo A, Sidari M, Texeira da Silva JA. 2013. Biological effects of water-soluble soil phenol and soil humic extracts on plant systems. Acta Physiologiae Plantarum 35: 309-320. https://doi.org/10.1007/s11738-012-1065-0
  51. Nasr M, Shariati M. 2005. The use of allelochemicals to delay germination of Astragalus cycluphyllus seeds. Journal of Agronomy 4: 147-150. https://doi.org/10.3923/ja.2005.147.150
  52. Navarro-Cano JA, Barbera GG, Ruiz-Navarro A, Castillo VM. 2009. Pine plantation bands limit seedling recruitment of a perennial grass under semiarid conditions. Journal of Arid Environments 73: 120-126. https://doi.org/10.1016/j.jaridenv.2008.09.002
  53. Nektarios PA, Economou G, Avgoulas C. 2005. Allelopathic effects of Pinus halepensis needles on turfgrasses and biosensor plants. Horticultural Science 40: 246-250.
  54. Node M, Tomita-Yokotani K, Suzuki T, Kosemura S, Hirata H, Hirata K, Nawamaki T, Yamamura S, Hasegawa K. 2003. Allelopathy of pinecone in Japanese red pine tree (Pinus densiflora Sieb. et Zucc.). Weed Biology and Management 3: 111-116. https://doi.org/10.1046/j.1445-6664.2003.00092.x
  55. Nourimand M, Mohsenzadeh S, Teixeira da Silva JA, Saharkhiz MJ. 2011. Allelopathic potential of fennel (Foeniculum vulgare Mill.). Medicinal and Aromatic Plant Science and Biotechnology 5: 54-57.
  56. Pellissier F. 1994. Effect of phenolic compounds in humus on the natural regeneration of spruce. Phytochemistry 36: 865-867. https://doi.org/10.1016/S0031-9422(00)90452-7
  57. Qu C, Chen Z. 2014. Antitumor effect of water decoctions of Taxus cuspidate on pancreatic cancer. Evidence-Based Complementary and Alternative Medicine Article ID 291675, 11 pages.
  58. Ruan X, Li ZH, Wang Q, Pan CD, Jiang DA, Wang GG. 2011. Autotoxicity and allelopathy of 3,4-dihydroxyacetophenone isolated from Picea schrenkiana needles. Molecules 16: 8874-8893. https://doi.org/10.3390/molecules16108874
  59. Saharkhiz MJ, Ashiri F, Salehi MR, Ghaemghami J, Mohammadi SH. 2009. Allelopathic potential of essential oils from Carum copticum L., Cuminum cyminum L., Rosmarinus officinalis L. and Zataria multiflora Boiss. Medicinal and Aromatic Plant Science and Biotechnology 3: 32-35.
  60. Scognamiglio M, D'Abrosca B, Esposito A, Pacifico S, Monaco P, Fiorentino A. 2013. Plant growth inhibitors: allelopathic role or phytotoxic effects? Focus on Mediterranean biomes. Phytochemistry Reviews 12: 803-830. https://doi.org/10.1007/s11101-013-9281-9
  61. Singh HP, Kohli RK, Batish DR, Kaushal PS. 1999. Allelopathy of gymnospermous trees. Journal of Forest Research 4: 245-254. https://doi.org/10.1007/BF02762256
  62. Stipe DJ, Bragg TB (1989) Effect of eastern red cedar on seedling establishment of prairie plants. In: Proceedings of the 11th North American Prairie Conference, pp. 101-102.
  63. Tegtmeier M, Harnischfeger G. 1994. Die Abhangigkeit des Thujongehaltes vom Extraktionsverfahren bei Zubereitungen aus Thujae herba. Pharmazie 49: 56-58.
  64. Teixeira da Silva JA, Malabadi RB. 2012. Factors affecting somatic embryogenesis in conifers. Journal of Forestry Research 23: 503-515. https://doi.org/10.1007/s11676-012-0266-0
  65. Terzi I, Kocacaliskan I, Demir Y. 2013. Allelopathic effects of some tree leaf extracts on seed germination and seedling growth of turf grasses. Journal of Environmental Protection and Ecology 14: 1236-1243.
  66. Tiwary AK, Puschner B, Kinde H, Tor ER. 2005. Diagnosis of Taxus (yew) poisoning in a horse. Journal of Veterinary Diagnostic Investigation 17: 252-255. https://doi.org/10.1177/104063870501700307
  67. Wang GG, Bauerle WL, Mudder BT. 2006. Effects of light acclimation on the photosynthesis, growth, and biomass allocation in American chestnut (Castanea dentata) seedlings. Forest Ecology and Management 226: 173-180. https://doi.org/10.1016/j.foreco.2005.12.063
  68. Wang XQ, Ran JH. 2014. Evolution and biogeography of gymnosperms. Molecular Phylogenetics and Evolution 75: 24-40. https://doi.org/10.1016/j.ympev.2014.02.005
  69. Wei P, Huo HL, Ma QH, Li HC, Xing XF, Tan XM, Luo JB. 2014. Pharmacokinetic comparisons of five ephedrine alkaloids following oral administration of four different Mahuang-Guizhi herb-pair aqueous extracts ratios in rats. Journal of Ethnopharmacology 155: 642-648. https://doi.org/10.1016/j.jep.2014.05.065
  70. Weir TL, Park SW, Vivanco JM. 2004. Biochemical and physiological mechanisms mediated by allelochemicals. Current Opinion in Plant Biology 7: 472-479. https://doi.org/10.1016/j.pbi.2004.05.007
  71. Zhang Y, Lu S, Gao H. 2010. Allelopathic effect of different solvent extraction from seed of Taxus chinensis var. mairei on cabbage seed germination and seedling growth. Chinese Agricultural Science Bulletin 26: 190-194.