References
- Barlow, R. E. and Proschan, F. (1975). Statistical theory of reliability and life testing, Holt, Reinhart and Winston, New York.
- Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means : Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.1080/01621459.1989.10478756
- Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo, et al., Oxford University Press, Oxford, 35-60.
- Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion). Journal of Royal Statistical Society B, 41, 113-147.
- Cox, D. R. and Reid, N. (1987). Orthogonal parameters and approximate conditional inference (with dis- cussion). Journal of Royal Statistical Society B, 49, 1-39.
- Datta, G. S. and Ghosh, M. (1995). Some remarks on noninformative priors. Journal of the American Statistical Association, 90, 1357-1363. https://doi.org/10.1080/01621459.1995.10476640
- Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors. The Annal of Statistics, 24, 141-159. https://doi.org/10.1214/aos/1033066203
- Datta, G. S., Ghosh, M. and Mukerjee, R. (2000). Some new results on probability matching priors. Calcutta Statistical Association Bulletin, 50, 179-192. https://doi.org/10.1177/0008068320000306
- Davis, D. J. (1952). An analysis of some failure dfata. Journal of the American Statistical Association, 47, 113-150. https://doi.org/10.1080/01621459.1952.10501160
- DiCiccio, T. J. and Stern, S. E. (1994). Frequentist and Bayesian Bartlett correction of test statistics based on adjusted prole likelihood. Journal of Royal Statistical Society B, 56, 397-408.
- Epstein, B. and Sobel, M. (1953). Life testing, Journal of the American Statistical Association, 48, 486-502. https://doi.org/10.1080/01621459.1953.10483488
- Ghosh, J. K. and Mukerjee, R. (1992). Noninformative priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo, et al., Oxford University Press, Oxford, 195-210.
- Ghosh, J. K. and Mukerjee, R. (1995). Frequentist validity of highest posterior density regions in the presence of nuisance parameters. Statistics & Decisions, 13, 131-139.
- Lawless, J. F. (2003). Statistical models and methods for lifetime data, John Wiley and Sons, New York.
- Kang, S. G., Kim, D. H. and Lee, W. D. (2013). Noninformative priors for the ratio of parameters of two Maxwell distributions. Journal of the Korean Data & Information Science Society, 24, 643-650. https://doi.org/10.7465/jkdi.2013.24.3.643
- Kang, S. G., Kim, D. H. and Lee, W. D. (2014). Noninformative priors for the log-logistic distribution. Journal of the Korean Data & Information Science Society, 25, 227-235. https://doi.org/10.7465/jkdi.2014.25.1.227
- Kim, H. J. (2006). On Bayesian estimation of the product of Poisson rates with application to reliability. Communications in Statistics: Simulation and Computation, 35, 47-59. https://doi.org/10.1080/03610910500416181
- Kenneth, V. D., John, S. D. and Kenneth, J. S. (1998). Incorporating a geometric mean formula into CPI. Monthly Labor Review, October, 2-7.
- Mukerjee, R. and Dey, D. K. (1993). Frequentist validity of posterior quantiles in the presence of a nuisance parameter : Higher order asymptotics. Biometrika, 80, 499-505. https://doi.org/10.1093/biomet/80.3.499
- Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors. Biometrika, 84, 970-975. https://doi.org/10.1093/biomet/84.4.970
- Mukerjee, R. and Reid, N. (1999). On a property of probability matching priors: Matching the alternative coverage probabilities. Biometrika, 86, 333-340. https://doi.org/10.1093/biomet/86.2.333
- Raubenheimer, L. (2012). Bayesian inference on nonlinear functions of Poisson rates. South African Statistical Jouranl, 46, 299-326.
- Saraccoglul, B., Kinaci, I. and Kundu, D. (2012). On estimation of R = P(Y < X) for exponential distribution under progressive type-II censoring. Journal of Statistical Computation and Simulation, 82, 729-744. https://doi.org/10.1080/00949655.2010.551772
- Southwood, T. (1978). Ecological methods with particular reference to the study of insect populations, Chapman & Hall, London.
- Stein, C. (1985). On the coverage probability of condence sets based on a prior distribution. Sequential Methods in Statistics, Banach Center Publications, 16, 485-514. https://doi.org/10.4064/-16-1-485-514
- Sun, D. and Ye, K. (1995). Reference prior Bayesian analysis for normal mean products. Journal of the American Statistical Association, 90, 589-597. https://doi.org/10.1080/01621459.1995.10476551
- Sun, D. and Ye, K. (1999). Reference priors for a product of normal means when variances are unknown. The Canadian Journal of Statistics, 27, 97-103. https://doi.org/10.2307/3315493
- Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika, 76, 604-608. https://doi.org/10.1093/biomet/76.3.604
- Welch, B. L. and Peers, H. W. (1963). On formulae for condence points based on integrals of weighted likelihood. Journal of Royal Statistical Society B, 25, 318-329.
- Xia, Z. P., Yu, J. Y., Cheng, L. D., Liu, L. F., and Wang, W. M. (2009). Study on the breaking strength of jute fibers using modified Weibull distribution. Journal of Composites Part A: Applied Science and Manufacturing, 40, 54-59. https://doi.org/10.1016/j.compositesa.2008.10.001
- Yfantis, E. A. and Flatman, G. T. (1991). On confidence interval for the product of three means of three normally distributed populations. Journal of Chemometrics, 5, 309-319. https://doi.org/10.1002/cem.1180050317