DOI QR코드

DOI QR Code

A study on the characteristics for temporary ventilation of long subsea tunnels - focused on the current situation and improvement requirements

초장대 해저터널의 공사중 환기 특성에 관한 기초연구 - 현황 및 개선필요사항 중심

  • Received : 2015.03.13
  • Accepted : 2015.03.24
  • Published : 2015.03.31

Abstract

Long subsea tunnel to be built below the seabed, as compared to the general railway tunnel, is subject to many restrictions in terms of spatial limitation when vertical or inclined shafts are built for the purpose of ventilation and fire safety. So, the construction of some artificial island is required to provide ventilation. But, because of construction difficulty and cost increase, it is necessary to minimize the artificial island construction. The longer ventilation distance is, the more fresh air requirement is needed. When supply airflow becomes excessive, duct size is restricted by the limitations of structure clearance and fan pressure and power increase exponentially. Therefore, in order to build a long subsea tunnel, it is necessary to overcome these practical problems and to develop technical solution that can keep the comfortable condition of tunnel environment during construction. In this study, as on ventilation method development suitable for long subsea tunnel, through comparison of temporary ventilation capacity calculation methods during construction phase, domestic and abroad, the application of Swiss SIA 196 code is found suitable for long subsea tunnel. And, through experiment on leakage of the duct connector, we confirmed that the leakage ratio per 100 m of domestic duct connection type is between 1.5~3.0%. Based on S-class duct of SIA 196 code, ventilation distance is 10.2 km, So, ventilation distance can be longer if duct connection method is improved. So, we confirmed that the improvement of leakage ratio is key issue in the construction-phase ventilation of long subsea tunnel.

일반적인 장대 철도터널에 비해 해저터널은 환기 및 방재를 위한 별도의 연직갱 또는 경사갱 설치에 공간상 많은 제약을 받게 되므로, 인공섬을 건설하여 환기를 수행할 필요가 있다. 그러나, 인공섬 설치에는 시공상의 문제 뿐만 아니라 건설비용이 증가하게 되므로, 인공섬 설치를 최소화하여 환기구간 거리를 늘려야 한다. 이에 따른 환기거리의 증가시, 누풍에 의한 신선공기 공급량이 커지게 된다. 공급풍량이 과대해지면, 구조물 한계에 의해 설치가능한 덕트직경이 제한적이므로, 팬 정압 및 동력도 상당히 증가하게 된다. 따라서, 초장대 해저터널을 건설하기 위해서는 이러한 현실적인 문제를 극복하고, 시공중 터널내 환경을 쾌적한 상태로 유지할 수 있는 기술력이 필요하다. 본 논문에서는 이러한 초장대 해저터널에 적합한 공사중 환기 방식을 개발하기 위한 기본연구로써, 국내외의 공사중 환기용량 산정방법 비교를 통해, 스위스의 SIA 196 코드가 초장대 해저터널계획에 적합함을 확인하였다. 또한, 덕트 접속부의 누출에 관한 실험을 통해, 국내의 덕트 접속방식은 100 m당 누풍율이 1.5~3.0% 사이임을 확인하였다. S등급 덕트의 경우 환기가능거리가 10.2 km 이므로, 덕트의 접속방법을 개선한다면, 환기가능거리는 더 길어질 수 있다. 따라서, 공사중 덕트의 누풍개선이 초장대 해저터널의 공사중 환기의 주요 이슈임을 확인하였다.

Keywords

References

  1. Akutio Engineering (2007), "Guidance on NLF duct for long distance tunnel".
  2. Anisdahl, L.M., Johansson, B., Thoen, K. (2008), "Study on the performance of ventiflex ducting and couplings", 12th U.S/North American Mine Ventilation Symposium, pp. 609-613.
  3. International Tunnelling and Underground Space Association (2011), "Guidance on the safe use of temporary ventilation ducting in tunnels ITA WG5 - Health & Safety in Works", pp. 1-9.
  4. JCOSHA (2012), "Ventilation technical guideline of tunnel construction".
  5. Khanna, R.K. (2008), "Ventilation of long tunnels", World Tunnel Congress, pp. 1898-1910.
  6. Korea Rail Network Authority (2012), "KR C-12130", pp. 19-32.
  7. Ministry of Land, Transport and Maritime Affairs (2011), "Road design manual part6 tunnel, 621 Construction phase equipments", pp. 621.1-8.
  8. SAREK (2011), "Air-conditioning and refrigerating engineering manual, 3rd Edition, Part2", pp. 5.2-16.
  9. Shin, Y.K. (1980), "A study on the friction coefficient for domestic vinyl air duct and leakage ratio of duct connectors", Graduate school of Inha University, pp. 1-18.
  10. Swiss Society of Engineers and Architects (1998), "SIA 196 - Ventilation in underground".