DOI QR코드

DOI QR Code

이방성을 갖는 해성점토 기초지반의 거동해석

Behaviour of Foundation Ground with Marine Clay in Anisotropy

  • Kim, Myeon-Su (Youil Consultent & Engineering) ;
  • Lee, Kang-Il (Dept. of Civil Engineering, Daejin University) ;
  • Kim, Chan-Ki (Dept. of Civil Engineering, Daejin University) ;
  • Yun, Jung-Mann (Dept. of Construction Information System, SinAnsan University) ;
  • Baek, Won-Jin (Department of Rural & Boisystems Eingineering, Chonnam National University)
  • 투고 : 2015.01.09
  • 심사 : 2015.03.09
  • 발행 : 2015.03.30

초록

본 연구는 대상형 하중이 작용하는 기초지반의 고유이방성에 대한 거동특성을 파악하기 위하여 시화지구 해성점토를 이용하여 일반삼축압축시험과 수평방향의 변형만을 허용하고 중간주응력(${\sigma}_2$) 방향의 변형률(${\varepsilon}_2$)을 0으로 하는 평면변형률 압축 및 신장시험을 실시하였다. 또한 일련의 시험결과에 의해 해석에 필요한 토질매개변수를 결정하였다. 그리고 대상하중이 작용하는 기초지반에 대하여 탄 소성 구성모델 중 자연퇴적점토의 거동특성을 가장 적절하게 설명할 수 있는 Cam-clay 모델을 적용하여 일반삼축압축시험 및 평면변형률시험 조건일 경우에 대하여 수치해석을 실시하였다. 해석결과 연직변위는 평면변형률 압축시험이 일반삼축압축시험에 비하여 18~25% 정도 변위가 크게 발생하였으며, 수평변위도 13~19% 정도 변위가 크게 발생하는 것으로 나타났다.

This study aims at investigating of the behavioral characteristics of foundation ground subjected to a strip load in anisotropy. Using marine clays sampled at Shihwa area, a series of laboratory tests including triaxial compressive test, plane strain compressive and expansion tests that allows horizontal deformation only and zero strain (${\varepsilon}_2$) in the direction of intermediate stress (${\sigma}_2$) are conducted. In addition, a numerical analysis using parameters obtained from the tests is carried out. In the numerical analysis, Cam-clay model that simulates the behavior of natural deposited clay properly is adopted. The analysis results show that the vertical displacements of the plane strain compressive tests are relatively larger than those of triaxial compressive tests by 18-25%. Likewise, the horizontal displacements is 13-19% larger.

키워드

참고문헌

  1. Duncan, A.M. and Seed, H.B. (1996a), "Anisotropy and Stress Reorientation in Clay", Journal of Soil Mechanics and Foundation Engineering, ASCE, Vol.92, No.SM5, pp.21-50.
  2. Duncan, A.M. and Seed, H.B. (1996b), "Strength Variation along Failure Surfaces in Clay", Journal of Soil Mechanics and Foundation Engineering, ASCE, Vol.92, No.SM6, pp. 81-104.
  3. Hong, W.P. (1988), "Strength Characteristics of Anlsotropic Overconsalidated Clay", Journal of the Korean Geotechnical Society, Vol.4, No.3, pp.35-42.
  4. Hong, W.P. (1989), "Influence of the Intermediate Principal Stress on Behavior of Overconsolidated Clay", Journal of the Civil Engineering, KSCE, Vol.8, No.2, pp.99-107.
  5. Ladd, C.C. (1971), "Strength Parameters and Stress-Strain Behavior of Saturated Clays." Massachusetts Institute of Technology, Department of Civil Engineering, Research Report R pp.65-11.
  6. Lade, P.V. (1978), "Cubical Triaxial Apparatus for Soil Testing", Geotechnical Testing Journal, GTJODJ, Vol.1, No.2, pp.93-101. https://doi.org/10.1520/GTJ10376J
  7. Lee, K.L. (1970), "Comparison of Plane Strain and Triaxial Tests of Sand", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.96, No.SM3, pp.901-923.
  8. Lee, K.L., and Shubeck, R.T. (1971), "Plane-Strain Undraned Strength of Compacted Clay", Journal of the Soil Mechanics and Foundatons Division, ASCE, Vol.97, No.SM1, pp.219-234.
  9. Lee, K.I. (1995), "A Behavior of Undrained Clayey Foundation Using Single Failure Surface Constitutive Model", Ph.D, Thesis, Chonnam National University, pp.66-81.
  10. Nam, J.M.,, Hong, W.P., (1993), "The Stress Strain Behavior of Sand in Cubical Triaxial Tests", Journal of the Korean Geotechnical Society, Vol.9, No.4, pp.83-92.