DOI QR코드

DOI QR Code

Effect of Surface Preparation and Curing Condition on the Interfacial Bond Strength between Ultra High Performance Concrete and Normal Strength Concrete

표면처리 및 양생 조건이 초고성능 콘크리트-보통 콘크리트 계면 부착강도에 미치는 영향

  • Received : 2015.04.02
  • Accepted : 2015.04.16
  • Published : 2015.05.30

Abstract

This study reports the interfacial bond strength between Ultra High Performance Concrete (UHPC) and Normal Strength Concrete (NSC). While previous studies have focused on the interfacial strength between NSC substrate and UHPC overlay, this study use precast UHPC for enhanced constructability and replacement of formwork. The factors affecting the interface strength are comprehensively reviewed. It can be classified into: interface shape, degree of hardening and moisture condition of UHPC before combining with NSC, and curing condition of composite materials. Conducted experiments verify the effects of each factor on the interface strength and, accordingly show different failure modes. In particular, a new failure mode of the failure of a part of UHPC was firstly found in the case of sample with rough interface between UHPC and NSC. The other factors of the degree of hardening and the moisture and curing conditions of UHPC were discussed. This research will provide a valuable foundation to utilize the UHPC as a composite material.

이 연구에서는 초고성능 콘크리트 (UHPC)와 보통 콘크리트 (NSC)간 계면부착강도에 관한 연구를 수행하였다. UHPC를 보수 보강재로 활용하기 위한 기존의 부착강도에 관한 연구와 달리, UHPC를 프리캐스트 합성부재로 활용하기 위한 연구에 초점을 맞추었으며, 여기에 영향을 미칠 수 있는 다양한 요인에 대하여 검토하였다. 기존 연구들을 분석한 결과, UHPC-NSC 계면 부착강도에 영향을 미칠 수 있는 요인으로는 계면의 형상, 합성 전 UHPC의 경화 진행상태, 합성 전 UHPC의 수분 흡수상태, 그리고 합성 후 양생장소와 같이 크게 4가지로 구분되었다. 계면의 형상을 변수로 한 실험에서는 형상에 따라 각기 다른 파괴모드가 나타났으며, 기존 연구에서 확인되지 않았던 거칠게 처리한 UHPC 계면 일부가 파괴되는 새로운 파괴모드가 발견되었다. 합성 전 UHPC의 경화진행 상태가 부착강도에 영향을 미치는 것으로 나타났으며, 이러한 영향은 부착 파괴모드에 따라 다르게 나타났다. 또한, 합성 전 UHPC의 수분상태가 부착강도에 영향을 주었으며, UHPC의 양생방법에 따라 서로 상반되는 결과를 보였다. 마지막으로, 합성한 시편의 양생조건 역시 계면 부착강도에 영향을 미친다는 것을 확인하였다.

Keywords

References

  1. Abu-Tair, A. I., Rigden, S. R., and Burley, E. (1996), Testing the Bond between Repair Materials and Concrete Substrate, ACI Material Journal, 93(6), 553-558.
  2. Austin, S. A., and Robins, P. J., (1993), Development of a Patch Test to Study the Behaviour of Shallow Concrete Patch Repairs, Magazine of Concrete Research, 45(164), 221-229. https://doi.org/10.1680/macr.1993.45.164.221
  3. Austin, S., Robins, P., and Pan, Y. (1995), Tensile Bond Testing of Concrete Repairs, Material and Structures, RILEM, 28(5), 249-259. https://doi.org/10.1007/BF02473259
  4. Austin, S., Robins, P., and Pan, Y. (1999), Shear Bond Testing of Concrete Repairs, Cement and Concrete Research, Elsevier, 29(7), 1067-1079. https://doi.org/10.1016/S0008-8846(99)00088-5
  5. Beushausen, H. D. (2005), Long-Term Performance of Bonded Overlays Subjected to Differential Shrinkage, Ph.D. Thesis, University of Cape Town, South Africa, 27-49.
  6. Bissonnette, B., Vaysburd, A. M., and von Fay, K. F. (2012), Best Practices for Preparing Concrete Surfaces Prior to Repairs and Overlays, Transportation Research Board of the National Academies, TRB, Washington, D.C., 1-17.
  7. Carbonell, M. A., Harris, D. K., Shann, S. V., and Ahlborn, T. M. (2012), Bond Strength between UHPC and Normal Strength Concrete (NSC) in accordance with Split Prism and Freeze-Thaw Cycling Tests, Proceedings of Hipermat 2012, 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials, Kassel, 377-384.
  8. Cho, C. G., Han, B. C., Lee J. H., and Kim, Y. Y. (2010), Flexural Test on Composite Deck Slab Produced with Extruded ECC Panel, Journal of the Korea Concrete Institute, KCI, 22(5), 695-702 (in Korean, with English abstract). https://doi.org/10.4334/JKCI.2010.22.5.695
  9. Espeche, A. D., and Leon, J. (2011), Estimation of Bond Strength Envelopes for Old-to-New Concrete Interfaces Based on a Cylinder Splitting Test, Construction and Building Materials, Elsevier, 25(3), 1222-1235. https://doi.org/10.1016/j.conbuildmat.2010.09.032
  10. Fehling, E., Schmidt, M., Walraven, J., Leutbecher, T., and Frohlech, S. (2013), Ultra-High Performance Concrete UHPC: Fundamental, Design, Examples, Ernst & Sohn, Kassel, 17-18.
  11. Gai, X., Darby, A., Ibell, T., and Evernden, M. (2012), Experimental Investigation into a Ductile FRP Stay-In-Place Formwork System for Concrete Slab, Construction and Building Materials, Elsevier, 49, 1013-1023.
  12. Gillette, R. W. (1964), A 10-Year Report on Performance of Bonded Concrete Resurfacing, Highway Research Record (94), Highway Research Board, 61-76.
  13. Harris, D. K., Sarkar, J., and Ahlborn, T. M. (2011), Characterization of Interface Bond of Ultra-High-Performance Concrete Bridge Deck Overlays, Journal of the Transportation Research Board, TRB, 40-49.
  14. Hong, S. G., and Kang, S. H. (2013), Formwork Development using UHPFRC, Proceedings of the RILEM-fib-AFGC International Sympsium on Ultra-High Performance Fibre-Reinforced Concrete, RILEM, Marseille, 197-206.
  15. Kamen, A. (2006), Time Dependent Behaviour of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC), 6th International Ph.D. Symposium in Civil Engineering, Zurich, 1-8.
  16. Kang, S. H., and Hong, S. G. (2014), Performance of Fresh and Hardened Ultra High Performance Concrete without Heat Treatment, Journal of the Korea Concrete Institute, KCI, 26(1), 23-34 (in Korean, with English abstract). https://doi.org/10.4334/JKCI.2014.26.1.023
  17. Kang, S. T., Park, J. J., Ryu, G. S., and Kim, S. W. (2010), The Effect of Steel-Fiber Reinforcement on the Compressive Strength of Ultra High Performance Cementitious Composites (UHPCC), Journal of The Korea Institute for Structural Maintenance and Inspection, JKSMI, 14(5), 110-118 (in Korean, with English abstract).
  18. Kim, G. B., Pilakoutas, K., and Waldron, P. (2008), Development of Thin FRP Reinforced GFRC Permanent Formwork Systems, Construction and Building Materials, Elsevier, 22(11), 2250-2259. https://doi.org/10.1016/j.conbuildmat.2007.07.029
  19. Kono, K., Musha, H., Kawaguchi, T., Eriguchi, A., Tanaka, S., Kobayashi, T., and Ikeda, A. (2013), Durability Study of the First PC Bridge Constructed with Ultra High Strength Fiber Reinforced Concrete in Japan, Proceedings of the RILEM-fib-AFGC International Sympsium on Ultra-High Performance Fibre-Reinforced Concrete, RILEM, Marseille, 239-248.
  20. Korean Agency for Technology and Standards (2006), Method of Test for Splitting Tensile Strength of Concrete, KS F 2423, Seoul, 1-16.
  21. Korean Agency for Technology and Standards (2007), Method of Test for Slump of Concrete, KS F 2402, Seoul, 1-10.
  22. Korean Agency for Technology and Standards (2009), Method of Test for Slump Flow of Fresh Concrete, KS F 2594, Seoul, 1-8.
  23. Korean Agency for Technology and Standards (2010), Standard Test Method for Compressive Strength of Concrete, KS F 2405, Seoul, 1-10.
  24. Kuder, K. G., Gupta, R., Harris-Jones, C., Hawksworth, R., Henderson, S., and Whitney, J. (2009), Effect of PVC Stay-In-Place Formwork on Mechanical Performance of Concrete, Journal of Materials in Civil Engineering, ASCE, 21(7), 309-315. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:7(309)
  25. Leung, C. K. Y., and Cao, Q. (2010), Development of Pseudo-Ductile Permanent Formwork for Durable Concrete Structures, Material and Structures, RILEM, 43(7), 993-1007. https://doi.org/10.1617/s11527-009-9561-4
  26. Li, G., Xie, H., and Xiong, G. (2001), Transition Zone Studies of New-to-Old Concrete with Different Binders, Cement Concrete Composites, Elsevier, 23(4-5), 381-387. https://doi.org/10.1016/S0958-9465(01)00002-6
  27. Mehta, P. K., and Monteiro, P. J. M. (2006), Concrete: Microstructure, Properties, and Materials 3rd edition, McGraw-Hill, New York, 21-84.
  28. Mirmoghtadaei, R., Mohammadi, M., Samani, N. A., and Mousavi, S. (2015), The Impact of Surface Preparation on the bond Strength of Repaired Concrete by Metakaolin Containing Concrete, Construction and Building Materials, Elsevier, 80, 76-83. https://doi.org/10.1016/j.conbuildmat.2015.01.018
  29. Momayez, A., Ehsani, M. R,, Ramezanianpour, A. A., and Rajaie, H. (2005), Comparison of Method for Evaluating Bond Strength between Concrete Substrate and Repair Materials, Cement and Concrete Research, Elsevier, 35(4), 748-757. https://doi.org/10.1016/j.cemconres.2004.05.027
  30. Nelson, M., and Fam, A. (2014), Full Bridge Testing at Scale Constructed with Novel FRP Stay-In-Plave Structural Forms for Concrete Deck, Construction and Building Materials, Elsevier, 50, 368-376. https://doi.org/10.1016/j.conbuildmat.2013.09.056
  31. Omar, B., Fattoum, K., Maissen, B., and Farid, B. (2010), Influence of the Roughness and Moisture of the Substrate Surface on the Bond between Old and New Concrete, Contemporary Engineering Sciences, 3(3), 139-147.
  32. Pigeon, M., and Saucier, F. (1992), Durability of Repaired Concrete Structures, Proceedings of International Symposium on Advances in Concrete Technology, Athens, 741-773.
  33. Richard, P., and Cheyrezy, M. (1995), Composition of Reactive Powder Concretes, Cement and Concrete Research, 25(7), 1501-1511. https://doi.org/10.1016/0008-8846(95)00144-2
  34. Santos, P. M. D., and Julio, E. N. B S. (2011), Factors Affecting Bond between New and Old Concrete, ACI Materials Journal, ACI, 108(4), 449-456.
  35. Shin, H. C., and Wan, Z. (2010), Interfacial Shear Bond Strength between Old and New Concrete, Fracture Mechanics of Concrete and Concrete Structures - Assessment, Durability, Monitoring and Retrofitting of Concrete Structures, KCI, Seoul, 1195-1200.
  36. Tawab, A. A., Fahmy, E. H., and Shaheen, Y. B. (2012), Use of Permanent Ferrocement Forms for Concrete Beam Construction, Material and Structures, RILEM, 45(9), 1319-1329. https://doi.org/10.1617/s11527-012-9834-1
  37. Tayeh, B. A., Abu Bakar, B. H., and Megat Johari, M. A., (2013), Characterization of the Interfacial Bond between Old Concrete Substrate and Ultra High Performance Fiber Concrete Repair Composite, Material and Structures, RILEM, 46(5), 743-753. https://doi.org/10.1617/s11527-012-9931-1
  38. Tayeha, B. A., Abu Bakara, B. H., Megat Johari, M. A., and Voo, Y. L. (2012), Mechanical and Permeability Properties of the Interface Between Normal Concrete Substrate and Ultra High Performance Fiber Concrete Overlay, Construction and Building Materials, Elsevier, 36, 538-548. https://doi.org/10.1016/j.conbuildmat.2012.06.013
  39. Thanoon, W. A., Yardim, Y., Jaafar, M. S., and Noorzaei, J. (2010), Structural Behavior of Ferrocement-Brick Composite Floor Slab Panel, Construction and Building Materials, Elsevier, 24(11), 2224-2230. https://doi.org/10.1016/j.conbuildmat.2010.04.034
  40. Wan, Z. (2011), Interfacial Shear Bond Strength between Old and New Concrete, M. S. Thesis, Louisiana State University, 1-21.
  41. Wirojjanapirom, P., Matsumoto, L., Kono, K., and Niwa, J. (2013), Experimental Investigation of Shear Behavior of RC Beam using UFC U-Shaped Permanent Formwork, Proceedings of the RILEM-fib-AFGC International Sympsium on Ultra-High Performance Fibre-Reinforced Concrete, RILEM, Marseille, 187-196.

Cited by

  1. EIS를 활용한 경량골재 종류별 시멘트 경화체의 계면특성 분석 vol.8, pp.4, 2020, https://doi.org/10.14190/jrcr.2020.8.4.498