DOI QR코드

DOI QR Code

Comparison of the gut microbiota profile in breast-fed and formula-fed Korean infants using pyrosequencing

  • Lee, Sang A (The Graduate School of Clinical Health Sciences, Ewha Womans University) ;
  • Lim, Ji Ye (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Kim, Bong-Soo (ChunLab, Inc.) ;
  • Cho, Su Jin (Department of Pediatrics, School of Medicine, Ewha Womans University) ;
  • Kim, Nak Yon (Arante Women, Hospital) ;
  • Kim, Ok Bin (Department of Life Science, Global Top 5 Research Program, Ewha Womans University) ;
  • Kim, Yuri (The Graduate School of Clinical Health Sciences, Ewha Womans University)
  • Received : 2014.07.25
  • Accepted : 2014.08.21
  • Published : 2015.06.01

Abstract

BACKGROUND/OBJECTIVES: Feeding in infancy is the most significant determinant of the intestinal microbiota in early life. The aim of this study was to determine the gut microbiota of Korean infants and compare the microbiota obtained between breast-fed and formula-fed Korean infants. SUBJECTS/METHODS: We analyzed the microbial communities in fecal samples collected from twenty 4-week old Korean (ten samples in each breast-fed or formula-fed) infants using pyrosequencing. RESULTS: The fecal microbiota of the 4-week-old Korean infants consisted of the three phyla Actinobacteria, Firmicutes, and Proteobacteria. In addition, five species, including Bifidocbacterium longum, Streptococcus salivarius, Strepotococcus lactarius, Streptococcus pseudopneumoniae, and Lactobacillus gasseri were common commensal intestinal microbiota in all infants. The predominant intestinal microbiota in the breast-fed infants (BFI) included the phylum Actinobacteria (average 70.55%), family Bifidobacteriacea (70.12%), genus Bifidobacterium (70.03%) and species Bifidobacterium longum (69.96%). In the microbiota from the formula-fed infants (FFI), the proportion of the phylum Actinobacteria (40.68%) was less, whereas the proportions of Firmicutes (45.38%) and Proteobacteria (13.85%) as well as the diversity of each taxonomic level were greater, compared to those of the BFI. The probiotic species found in the 4-week-old Korean infants were Bifidobacterium longum, Streptococcus salivarius, and Lactobacillus gasseri. These probiotic species accounted for 93.81% of the microbiota from the BFI, while only 63.80% of the microbiota from the FFI. In particular, B. longum was more abundant in BFI (69.96%) than in FFI (34.17%). CONCLUSIONS: Breast milk supports the growth of B. longum and inhibits others. To the best of our knowledge, this study was the first attempt to analyze the gut microbiota of healthy Korean infants according to the feeding type using pyrosequencing. Our data can be used as a basis for further studies to investigate the development of intestinal microbiota with aging and disease status.

Keywords

References

  1. Simon GL, Gorbach SL. Intestinal flora in health and disease. Gastroenterology 1984;86:174-93.
  2. Young VB. The intestinal microbiota in health and disease. Curr Opin Gastroenterol 2012;28:63-9. https://doi.org/10.1097/MOG.0b013e32834d61e9
  3. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010;107:14691-6. https://doi.org/10.1073/pnas.1005963107
  4. Cardona F, Andres-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuno MI. Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem 2013;24:1415-22. https://doi.org/10.1016/j.jnutbio.2013.05.001
  5. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Dore J; MetaHIT Consortium, Antolin M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Merieux A, Melo Minardi R, M'rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P. Enterotypes of the human gut microbiome. Nature 2011;473:174-80. https://doi.org/10.1038/nature09944
  6. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334:105-8. https://doi.org/10.1126/science.1208344
  7. Fallani M, Young D, Scott J, Norin E, Amarri S, Adam R, Aguilera M, Khanna S, Gil A, Edwards CA, Dore J; Other Members of the INFABIO Team. Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breastfeeding, and antibiotics. J Pediatr Gastroenterol Nutr 2010;51:77-84. https://doi.org/10.1097/MPG.0b013e3181d1b11e
  8. Morelli L. Postnatal development of intestinal microflora as influenced by infant nutrition. J Nutr 2008;138:1791S-1795S. https://doi.org/10.1093/jn/138.9.1791S
  9. Hooper LV. Bacterial contributions to mammalian gut development. Trends Microbiol 2004;12:129-34. https://doi.org/10.1016/j.tim.2004.01.001
  10. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006;118: 511-21. https://doi.org/10.1542/peds.2005-2824
  11. Hanson LA, Korotkova M. The role of breastfeeding in prevention of neonatal infection. Semin Neonatol 2002;7:275-81. https://doi.org/10.1016/S1084-2756(02)90124-7
  12. Lopez-Alarcon M, Villalpando S, Fajardo A. Breast-feeding lowers the frequency and duration of acute respiratory infection and diarrhea in infants under six months of age. J Nutr 1997;127:436-43. https://doi.org/10.1093/jn/127.3.436
  13. Morrow AL, Rangel JM. Human milk protection against infectious diarrhea: implications for prevention and clinical care. Semin Pediatr Infect Dis 2004;15:221-8. https://doi.org/10.1053/j.spid.2004.07.002
  14. Wright AL, Bauer M, Naylor A, Sutcliffe E, Clark L. Increasing breastfeeding rates to reduce infant illness at the community level. Pediatrics 1998;101:837-44. https://doi.org/10.1542/peds.101.5.837
  15. Isaacs CE. Human milk inactivates pathogens individually, additively, and synergistically. J Nutr 2005;135:1286-8. https://doi.org/10.1093/jn/135.5.1286
  16. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI. A core gut microbiome in obese and lean twins. Nature 2009;457:480-4. https://doi.org/10.1038/nature07540
  17. Zaura E, Keijser BJ, Huse SM, Crielaard W. Defining the healthy "core microbiome" of oral microbial communities. BMC Microbiol 2009;9:259. https://doi.org/10.1186/1471-2180-9-259
  18. Kim BS, Kim JN, Yoon SH, Chun J, Cerniglia CE. Impact of enrofloxacin on the human intestinal microbiota revealed by comparative molecular analysis. Anaerobe 2012;18:310-20. https://doi.org/10.1016/j.anaerobe.2012.01.003
  19. Jeon YS, Chun J, Kim BS. Identification of household bacterial community and analysis of species shared with human microbiome. Curr Microbiol 2013;67:557-63. https://doi.org/10.1007/s00284-013-0401-y
  20. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716-21. https://doi.org/10.1099/ijs.0.038075-0
  21. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011;27:2194-200. https://doi.org/10.1093/bioinformatics/btr381
  22. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009;75:7537-41. https://doi.org/10.1128/AEM.01541-09
  23. Rijkers GT, de Vos WM, Brummer RJ, Morelli L, Corthier G, Marteau P. Health benefits and health claims of probiotics: bridging science and marketing. Br J Nutr 2011;106:1291-6. https://doi.org/10.1017/S000711451100287X
  24. Chang JY, Shin SM, Chun J, Lee JH, Seo JK. Pyrosequencing-based molecular monitoring of the intestinal bacterial colonization in preterm infants. J Pediatr Gastroenterol Nutr 2011;53:512-9.
  25. Heikkila MP, Saris PE. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol 2003;95:471-8. https://doi.org/10.1046/j.1365-2672.2003.02002.x
  26. Fan W, Huo G, Li X, Yang L, Duan C. Impact of diet in shaping gut microbiota revealed by a comparative study in infants during the six months of life. J Microbiol Biotechnol 2014;24:133-43. https://doi.org/10.4014/jmb.1309.09029
  27. Bezirtzoglou E, Tsiotsias A, Welling GW. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe 2011;17:478-82. https://doi.org/10.1016/j.anaerobe.2011.03.009
  28. Tannock GW, Lawley B, Munro K, Gowri Pathmanathan S, Zhou SJ, Makrides M, Gibson RA, Sullivan T, Prosser CG, Lowry D, Hodgkinson AJ. Comparison of the compositions of the stool microbiotas of infants fed goat milk formula, cow milk-based formula, or breast milk. Appl Environ Microbiol 2013;79:3040-8. https://doi.org/10.1128/AEM.03910-12
  29. Yoshioka H, Iseki K, Fujita K. Development and differences of intestinal flora in the neonatal period in breast-fed and bottle-fed infants. Pediatrics 1983;72:317-21.
  30. Lilly DM, Stillwell RH. Probiotics: growth-promoting factors produced by microorganisms. Science 1965;147:747-8. https://doi.org/10.1126/science.147.3659.747
  31. Coppa GV, Gabrielli O, Zampini L, Galeazzi T, Ficcadenti A, Padella L, Santoro L, Soldi S, Carlucci A, Bertino E, Morelli L. Oligosaccharides in 4 different milk groups, Bifidobacteria, and Ruminococcus obeum. J Pediatr Gastroenterol Nutr 2011;53:80-7. https://doi.org/10.1097/MPG.0b013e3182073103
  32. Marcobal A, Sonnenburg JL. Human milk oligosaccharide consumption by intestinal microbiota. Clin Microbiol Infect 2012;18 Suppl 4:12-5. https://doi.org/10.1111/j.1469-0691.2012.03863.x
  33. Conway PL. Selection criteria for probiotic microorganisms. Asia Pac J Clin Nutr 1996;5:10-4.
  34. Bezirtzoglou E, Romond MB, Romond C. Regulation of the bacterial intestinal implantation in infant born by caesarean section. Comp Immunol Microbiol Infect Dis 1992;15:71-4.
  35. Thum C, Cookson AL, Otter DE, McNabb WC, Hodgkinson AJ, Dyer J, Roy NC. Can nutritional modulation of maternal intestinal microbiota influence the development of the infant gastrointestinal tract? J Nutr 2012;142:1921-8. https://doi.org/10.3945/jn.112.166231
  36. Hascoet JM, Hubert C, Rochat F, Legagneur H, Gaga S, Emady-Azar S, Steenhout PG. Effect of formula composition on the development of infant gut microbiota. J Pediatr Gastroenterol Nutr 2011;52: 756-62. https://doi.org/10.1097/MPG.0b013e3182105850

Cited by

  1. Changes seen in gut bacteria content and distribution with obesity: causation or association? vol.127, pp.8, 2015, https://doi.org/10.1080/00325481.2015.1098519
  2. Early-Life Events, Including Mode of Delivery and Type of Feeding, Siblings and Gender, Shape the Developing Gut Microbiota vol.11, pp.6, 2016, https://doi.org/10.1371/journal.pone.0158498
  3. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime vol.18, pp.7, 2016, https://doi.org/10.1111/1462-2920.13318
  4. Temporal Change of the Content of 10 Oligosaccharides in the Milk of Chinese Urban Mothers vol.8, pp.6, 2016, https://doi.org/10.3390/nu8060346
  5. Oral Microbiota in Infants Fed a Formula Supplemented with Bovine Milk Fat Globule Membranes - A Randomized Controlled Trial vol.12, pp.1, 2017, https://doi.org/10.1371/journal.pone.0169831
  6. Gut microbiota in early life and its influence on health and disease: A position paper by the Malaysian Working Group on Gastrointestinal Health vol.53, pp.12, 2017, https://doi.org/10.1111/jpc.13640
  7. Characterization of Gastric Microbiota in Twins vol.74, pp.2, 2017, https://doi.org/10.1007/s00284-016-1176-8
  8. The role of early life nutrition in the establishment of gastrointestinal microbial composition and function vol.8, pp.2, 2017, https://doi.org/10.1080/19490976.2016.1278104
  9. Increased Exclusivity of Breastfeeding Associated with Reduced Gut Inflammation in Infants vol.10, pp.10, 2015, https://doi.org/10.1089/bfm.2015.0110
  10. Host-microbe interaction in the gastrointestinal tract vol.20, pp.7, 2017, https://doi.org/10.1111/1462-2920.13926
  11. Milk Fat Globule Membrane Supplementation in Formula Modulates the Neonatal Gut Microbiome and Normalizes Intestinal Development vol.7, pp.1, 2017, https://doi.org/10.1038/srep45274
  12. Factors Affecting Gastrointestinal Microbiome Development in Neonates vol.10, pp.3, 2018, https://doi.org/10.3390/nu10030274
  13. Therapeutic Microbiology: The Role of Bifidobacterium breve as Food Supplement for the Prevention/Treatment of Paediatric Diseases vol.10, pp.11, 2018, https://doi.org/10.3390/nu10111723
  14. Disbiome database: linking the microbiome to disease vol.18, pp.1, 2018, https://doi.org/10.1186/s12866-018-1197-5
  15. Three-Month Feeding Integration With Bifidobacterium Strains Prevents Gastrointestinal Symptoms in Healthy Newborns vol.5, pp.2296-861X, 2018, https://doi.org/10.3389/fnut.2018.00039
  16. Independent of Birth Mode or Gestational Age, Very-Low-Birth-Weight Infants Fed Their Mothers' Milk Rapidly Develop Personalized Microbiotas Low in Bifidobacterium vol.148, pp.3, 2018, https://doi.org/10.1093/jn/nxx071
  17. Joint effects of pregnancy, sociocultural, and environmental factors on early life gut microbiome structure and diversity vol.6, pp.None, 2015, https://doi.org/10.1038/srep31775
  18. Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome vol.5, pp.9, 2015, https://doi.org/10.1016/j.molmet.2016.07.004
  19. Impact of maternal nutrition in pregnancy and lactation on offspring gut microbial composition and function vol.7, pp.6, 2015, https://doi.org/10.1080/19490976.2016.1241357
  20. Human Breast-Milk Feeding Enhances the Humoral and Cell-Mediated Immune Response in Neonatal Piglets vol.148, pp.11, 2015, https://doi.org/10.1093/jn/nxy170
  21. Feeding Pasteurized Waste Milk to Preweaned Dairy Calves Changes Fecal and Upper Respiratory Tract Microbiota vol.6, pp.None, 2019, https://doi.org/10.3389/fvets.2019.00159
  22. The Perturbation of Infant Gut Microbiota Caused by Cesarean Delivery Is Partially Restored by Exclusive Breastfeeding vol.10, pp.None, 2015, https://doi.org/10.3389/fmicb.2019.00598
  23. The human microbiome and role of probiotics in the prevention of atopic dermatitis vol.33, pp.1, 2015, https://doi.org/10.3388/jspaci.33.26
  24. Abnormality in Maternal Dietary Calcium Intake During Pregnancy and Lactation Promotes Body Weight Gain by Affecting the Gut Microbiota in Mouse Offspring vol.63, pp.5, 2019, https://doi.org/10.1002/mnfr.201800399
  25. Effects of Different Modes of Delivery and Feeding on Intestinal Flora of Newborns and Infants with Different Ages vol.29, pp.4, 2015, https://doi.org/10.5812/ijp.88329
  26. The microbiota composition of the offspring of patients with gestational diabetes mellitus (GDM) vol.14, pp.12, 2015, https://doi.org/10.1371/journal.pone.0226545
  27. The microbiota composition of the offspring of patients with gestational diabetes mellitus (GDM) vol.14, pp.12, 2015, https://doi.org/10.1371/journal.pone.0226545
  28. Dynamic Interplay Between Microbiota and Mucosal Immunity in Early Shaping of Asthma and its Implication for the COVID-19 Pandemic vol.13, pp.None, 2020, https://doi.org/10.2147/jaa.s272705
  29. The Impact of Age and Pathogens Type on the Gut Microbiota in Infants with Diarrhea in Dalian, China vol.2020, pp.None, 2015, https://doi.org/10.1155/2020/8837156
  30. Comparing Gut Microbiome in Mothers’ Own Breast Milk- and Formula-Fed Moderate-Late Preterm Infants vol.11, pp.None, 2020, https://doi.org/10.3389/fmicb.2020.00891
  31. Influence of Maternal Milk on the Neonatal Intestinal Microbiome vol.12, pp.3, 2020, https://doi.org/10.3390/nu12030823
  32. Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health vol.12, pp.4, 2020, https://doi.org/10.3390/nu12041039
  33. Oral microbiome: possible harbinger for children’s health vol.12, pp.1, 2015, https://doi.org/10.1038/s41368-020-0082-x
  34. Maternal diet alters human milk oligosaccharide composition with implications for the milk metagenome vol.10, pp.1, 2015, https://doi.org/10.1038/s41598-020-79022-6
  35. Stool microbiome, pH and short/branched chain fatty acids in infants receiving extensively hydrolyzed formula, amino acid formula, or human milk through two months of age vol.20, pp.1, 2015, https://doi.org/10.1186/s12866-020-01991-5
  36. Gut Bacterial Dysbiosis in Children with Intractable Epilepsy vol.10, pp.1, 2021, https://doi.org/10.3390/jcm10010005
  37. Beyond samples: A metric revealing more connections of gut microbiota between individuals vol.19, pp.None, 2015, https://doi.org/10.1016/j.csbj.2021.07.009
  38. Sex Differences in Gut Microbial Development of Preterm Infant Twins in Early Life: A Longitudinal Analysis vol.11, pp.None, 2021, https://doi.org/10.3389/fcimb.2021.671074
  39. The risk of infectious pathogens in breast-feeding, donated human milk and breast milk substitutes vol.24, pp.7, 2021, https://doi.org/10.1017/s1368980020000555
  40. Recent advances of intestinal microbiota transmission from mother to infant vol.87, pp.None, 2015, https://doi.org/10.1016/j.jff.2021.104719