DOI QR코드

DOI QR Code

POSETS ADMITTING THE LINEARITY OF ISOMETRIES

  • Hyun, Jong Youn (Institute of Mathematical Sciences Ewha Womans University) ;
  • Kim, Jeongjin (Department of Mathematics Myungji University) ;
  • Kim, Sang-Mok (Department of Mathematics Kwangwoon University)
  • Received : 2014.06.26
  • Published : 2015.05.31

Abstract

In this paper, we deal with a characterization of the posets with the property that every poset isometry of $\mathbb{F}^n_q$ fixing the origin is a linear map. We say such a poset to be admitting the linearity of isometries. We show that a poset P admits the linearity of isometries over $\mathbb{F}^n_q$ if and only if P is a disjoint sum of chains of cardinality 2 or 1 when q = 2, or P is an anti-chain otherwise.

Keywords

References

  1. R. A. Brualdi, J. Graves, and K. M. Lawrence, Codes with a poset metric, Discrete Math. 147 (1995), no. 1-3, 57-72. https://doi.org/10.1016/0012-365X(94)00228-B
  2. H. Fripertinger, Enumeration of the semilinear isometry classes of linear codes, Bayreuth. Math. Schr. 74 (2005), 100-122.
  3. J. Y. Hyun, A subgroup of the full poset-isometry group, SIAM J. Discrete Math. 24 (2010), no. 2, 589-599. https://doi.org/10.1137/090758489
  4. J. Y. Hyun and H. K. Kim, Maximum distance separable poset codes, Des. Codes Cryptogr. 48 (2008), no. 3, 247-261. https://doi.org/10.1007/s10623-008-9204-8
  5. H. K. Kim and D. S. Krotov, The poset metrics that allow binary codes of codimension m to be m-, (m−1)-, or (m−2)-perfect, IEEE Trans. Inform. Theory 54 (2008), no. 11, 5241-5246. https://doi.org/10.1109/TIT.2008.929972
  6. F. J. MacWilliams and N. J. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1998.
  7. L. Panek, M. Firer, and M. M. S. Alves, Symmetry groups of Rosenbloom-Tsfasman spaces, Discrete Math. 309 (2009), no. 4, 763-771. https://doi.org/10.1016/j.disc.2008.01.013
  8. L. Panek, M. Firer, H. K. Kim, and J. Y. Hyun, Groups of linear isometries on poset structures, Discrete Math. 308 (2008), no. 18, 4116-4123. https://doi.org/10.1016/j.disc.2007.08.001